Superfluidity and magnetism in multicomponent ultracold fermions - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Superfluidity and magnetism in multicomponent ultracold fermions

Description:

Superfluidity and magnetism in multicomponent ultracold fermions ... Bardeen, Cooper, Schreiffer. Phys. Rev. 108, 1175 (1957) Fulde-Ferrel, Larkin-Ovchinnikov ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 24
Provided by: che90
Category:

less

Transcript and Presenter's Notes

Title: Superfluidity and magnetism in multicomponent ultracold fermions


1
Superfluidity and magnetism in multicomponent
ultracold fermions
  • Robert Cherng - Harvard
  • Gil Refael - Caltech
  • Eugene Demler - Harvard

arXiv0705.0347
2
Fermionic superfluidity and magnetization?
From Condensed Matter
To Cold Atoms
3
Fermionic superfluidity and magnetization?
  • Cold atoms multicomponent fermions
  • Superfluidity pairing of different states
  • Magnetization imbalance of different states
  • This talk N2 vs. Ngt2, mean-field theory

4
N2 BCS, FFLO, BP/Sarma

FS
FS

FS
FS
5
N2 BCS, FFLO, BP/Sarma

FS
FS
BCS
FFLO

FS
FS
6
N2 BCS, FFLO, BP/Sarma
  • Bardeen, Cooper, Schreiffer
  • Phys. Rev. 108, 1175 (1957)

BCS
  • Fulde-Ferrel, Larkin-Ovchinnikov
  • Breaks translational symmetry
  • Phys. Rev. 135, A550 (1964)
  • ZETP 47, 1136 (1964)

FFLO
  • Liu-Wilczek (Breached-Pair), Sarma
  • Phase separation in k space
  • Gapless quasiparticles
  • PRL 90, 047002 (2003)
  • J. Phys. Chem. Solids 24, 1029 (1963)

7
Three components using 6Li
6Li (I,L,S)(1,0,1/2)
E
B
Innsbruck group PRL 94, 103201 (2005)
8
Pairing Three Components?
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
9
Pairing Three Components?
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
10
Pairing Three Components?
FS
FS
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
11
Model action
Imaginary Time Action
Coupling Constants
12
Physical symmetries and symmetry breaking
U(N) Symmetric µaµ, ?aß?
U(1)N Normal State µa ? µß, ?aß ? ??d
U(1)N-P Superfluid State µa ? µß, ?aß ?
??d lt?a?ßgt?0
13
Mean-field theory and Ward identities
Order Parameters
14
Mean-field theory and Ward identities
Order Parameters
Constrained by Ward-Takahashi identity
15
Mean-field theory and Ward identities
Order Parameters
Constrained by Ward-Takahashi identity
Solved by diagonalizing order parameters
16
Mean-field theory and Ward identities
Order Parameters
Constrained by Ward-Takahashi identity
Solved by diagonalizing order parameters
And finding the eigenvectors
Diagonal Pairing States
17
Microscopic Pairing Wavefunctions
N2 P1
N3 P1
N4 P1
N4 P2
18
Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
U(N) symmetric superfluid transition
Ginzburg-Landau parameters a, b, c, d
19
N3 Phase Diagrams
TgtTcSYM Fixed µ
TltTcSYM Fixed µ
TgtTcSYM Fixed n
TltTcSYM Fixed n
20
N4 Phase Diagrams
TgtTcSYM, fixed µ
TltTcSYM, fixed µ
Legend
Global minimum
1st meta- stable
?, f parameterize anisotropies in µ
21
Phase-contrast Imaging
MIT Group PRL 97, 030401 (2006)
22
RF Spectroscopy
3
RF
1
2
Innsbruck Group Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Lower T
23
Conclusions
  • Ngt2 Superfluidity drives magnetization
  • Classification via Ward-Takahashi identities
  • Rich phase diagrams
  • first/second order transitions
  • metastability/phase separation
  • multicritical points
  • Direct signatures in cold atoms
Write a Comment
User Comments (0)
About PowerShow.com