Superfluidity and magnetism in multicomponent ultracold fermions - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Superfluidity and magnetism in multicomponent ultracold fermions

Description:

Ginzburg-Landau Free Energy. Expansion from U(N) symmetric superfluid transition ... Ginzburg-Landau Free Energy. Quadratic symmetry breaking. Coupling of ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 31
Provided by: che90
Category:

less

Transcript and Presenter's Notes

Title: Superfluidity and magnetism in multicomponent ultracold fermions


1
Superfluidity and magnetism in multicomponent
ultracold fermions
  • Robert Cherng
  • Gil Refael, Eugene Demler
  • arxiv0705.0347

2
Fermionic superfluidity and magnetization?
  • Superfluidity pairing of different states
  • Magnetization imbalance of different states
  • This talk N2 vs. Ngt2, mean-field theory

3
N2 BCS, FFLO, BP/Sarma

FS
FS

FS
FS
4
N2 BCS, FFLO, BP/Sarma

FS
FS
BCS
FFLO

FS
FS
5
N2 BCS, FFLO, BP/Sarma
  • Bardeen, Cooper, Schreiffer
  • Phys. Rev. 108, 1175 (1957)

BCS
  • Fulde-Ferrel, Larkin-Ovchinnikov
  • Breaks translational symmetry
  • Phys. Rev. 135, A550 (1964)
  • ZETP 47, 1136 (1964)

FFLO
  • Liu-Wilczek (Breached-Pair), Sarma
  • Phase separation in k space
  • Gapless quasiparticles
  • PRL 90, 047002 (2003)
  • J. Phys. Chem. Solids 24, 1029 (1963)

6
Three components using 6Li
6Li (I,L,S)(1,0,1/2)
E
B
Innsbruck group PRL 94, 103201 (2005)
7
Three or more components
  • Each component individually conserved
  • N densities na, N(N-1)/2 scattering lengths aaß
  • Limitations spin flips, inelastic losses

N2
Ngt2
8
Pairing Three Components?
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
9
Pairing Three Components?
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
10
Pairing Three Components?
FS
FS
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
11
Model action
Imaginary Time Action
Coupling Constants
12
Physical symmetries and symmetry breaking
U(N) Symmetric µaµ, ?aß?
U(1)N Normal State µa ? µß, ?aß ? ??d
U(1)N-P Superfluid State µa ? µß, ?aß ?
??d lt?a?ßgt?0
13
Field Redefinition Invariance
Start from
14
Field Redefinition Invariance
Start from
Then redefine fields
15
Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
16
Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
17
Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
Or infinitesimally (WT identity)
18
Mean-field theory
Order Parameters
Gap Equations
Greens Functions
19
Diagonal Pairing States
Solve WT Identity
By diagonalizing order parameters
And finding the eigenvectors
20
Microscopic Pairing Wavefunctions
N2 P1
N3 P1
N4 P1
N4 P2
21
Ginzburg-Landau Free Energy
Expansion from U(N) symmetric superfluid
transition
22
Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Expansion from U(N) symmetric superfluid
transition
23
Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Particle-hole symmetric
Expansion from U(N) symmetric superfluid
transition
Particle-hole symmetry breaking
24
N3 Phase Diagrams
TgtTcSYM Fixed µ
TltTcSYM Fixed µ
TgtTcSYM Fixed n
TltTcSYM Fixed n
25
N4 Phase Diagrams
TgtTcSYM, fixed µ
TltTcSYM, fixed µ
Legend
Global minimum
1st meta- stable
?, f parameterize anisotropies in µ
26
U(N) Symmetric Superfluid Transition
Ginzburg-Landau Action
Fields
Symmetric
Symmetry Breaking
27
RG in e-Expansion
Crit. ? fields
Crit. ? fields, Mass. M fields integrated out
Crit. ? fields, Mass. M fields kept in
28
Phase-contrast Imaging
MIT Group PRL 97, 030401 (2006)
29
RF Spectroscopy
3
RF
1
2
Innsbruck Group Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Lower T
30
Conclusions
  • Superfluidity drives magnetization for
    multicomponent fermions
  • Classification of microscopic pairing
    wavefunctions via Ward-Takahashi identities
  • Rich phase diagrams first/second order
    transitions, metastability/phase separation,
    multicritical
Write a Comment
User Comments (0)
About PowerShow.com