Title: Superfluidity and magnetism in multicomponent ultracold fermions
1Superfluidity and magnetism in multicomponent
ultracold fermions
- Robert Cherng
- Gil Refael, Eugene Demler
- arxiv0705.0347
2Fermionic superfluidity and magnetization?
- Superfluidity pairing of different states
- Magnetization imbalance of different states
- This talk N2 vs. Ngt2, mean-field theory
3N2 BCS, FFLO, BP/Sarma
FS
FS
FS
FS
4N2 BCS, FFLO, BP/Sarma
FS
FS
BCS
FFLO
FS
FS
5N2 BCS, FFLO, BP/Sarma
- Bardeen, Cooper, Schreiffer
- Phys. Rev. 108, 1175 (1957)
BCS
- Fulde-Ferrel, Larkin-Ovchinnikov
- Breaks translational symmetry
- Phys. Rev. 135, A550 (1964)
- ZETP 47, 1136 (1964)
FFLO
- Liu-Wilczek (Breached-Pair), Sarma
- Phase separation in k space
- Gapless quasiparticles
- PRL 90, 047002 (2003)
- J. Phys. Chem. Solids 24, 1029 (1963)
6Three components using 6Li
6Li (I,L,S)(1,0,1/2)
E
B
Innsbruck group PRL 94, 103201 (2005)
7Three or more components
- Each component individually conserved
- N densities na, N(N-1)/2 scattering lengths aaß
- Limitations spin flips, inelastic losses
N2
Ngt2
8Pairing Three Components?
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
9Pairing Three Components?
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
10Pairing Three Components?
FS
FS
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
11Model action
Imaginary Time Action
Coupling Constants
12Physical symmetries and symmetry breaking
U(N) Symmetric µaµ, ?aß?
U(1)N Normal State µa ? µß, ?aß ? ??d
U(1)N-P Superfluid State µa ? µß, ?aß ?
??d lt?a?ßgt?0
13Field Redefinition Invariance
Start from
14Field Redefinition Invariance
Start from
Then redefine fields
15Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
16Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
17Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
Or infinitesimally (WT identity)
18Mean-field theory
Order Parameters
Gap Equations
Greens Functions
19Diagonal Pairing States
Solve WT Identity
By diagonalizing order parameters
And finding the eigenvectors
20Microscopic Pairing Wavefunctions
N2 P1
N3 P1
N4 P1
N4 P2
21Ginzburg-Landau Free Energy
Expansion from U(N) symmetric superfluid
transition
22Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Expansion from U(N) symmetric superfluid
transition
23Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Particle-hole symmetric
Expansion from U(N) symmetric superfluid
transition
Particle-hole symmetry breaking
24N3 Phase Diagrams
TgtTcSYM Fixed µ
TltTcSYM Fixed µ
TgtTcSYM Fixed n
TltTcSYM Fixed n
25N4 Phase Diagrams
TgtTcSYM, fixed µ
TltTcSYM, fixed µ
Legend
Global minimum
1st meta- stable
?, f parameterize anisotropies in µ
26U(N) Symmetric Superfluid Transition
Ginzburg-Landau Action
Fields
Symmetric
Symmetry Breaking
27RG in e-Expansion
Crit. ? fields
Crit. ? fields, Mass. M fields integrated out
Crit. ? fields, Mass. M fields kept in
28Phase-contrast Imaging
MIT Group PRL 97, 030401 (2006)
29RF Spectroscopy
3
RF
1
2
Innsbruck Group Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Lower T
30Conclusions
- Superfluidity drives magnetization for
multicomponent fermions - Classification of microscopic pairing
wavefunctions via Ward-Takahashi identities - Rich phase diagrams first/second order
transitions, metastability/phase separation,
multicritical