Title: The%20Convolution%20Integral
1The Convolution Integral
- Convolution operation given symbol
y equals x convolved with h
2The Convolution Integral
- The time domain output of an LTI system is equal
to the convolution of the impulse response of the
system with the input signal - Much simpler relationship between frequency
domain input and output - First look at graphical interpretation of
convolution integral
3Graphical Interpretation of Convolution Integral
- To correctly understand convolution it is often
easier to think graphically
4Graphical Interpretation of Convolution Integral
Take impulse response and reverse it in time
5Graphical Interpretation of Convolution Integral
h(t-t)
t
t
Then shift it by time t
6Graphical Interpretation of Convolution Integral
h(t-t)
x(t)
t
a
t
Overlay input function x(t) and integrate over
times where functions overlap - in this case
between a and t
7Graphical Interpretation of the Convolution
Integral
- Convolving two functions involves
- flipping or reversing one function in time
- sliding this reversed or flipped function over
the other and - integrating between the times when BOTH functions
overlap
8Example
- Convolution of two gate pulses each of height 1
x1(t)
0 1 t
0 2 t
9Example
x2(t)
x2(-t)
-2 0 2 t
Reverse function
10Example
x1(t)
x2(-t)
-1 0 1 t
t
Reverse function, slide x2 over x1 and evaluate
integral
11Example
x2(t-t)
x1(t)
0 1 t
t
Area of overlap is increasing linearly
12Example
x2(t-t)
x1(t)
0 1 t
t-2
t
Area of overlap constant
13Example
x1(t)
x2(t-t)
0 1 t
t
t-2
Area declining linearly - width of shaded area
1-(t-2)3-t
14Example
x1(t)
x2(t-t)
0 1 t
t
After time t3 the convolution integral is zero
15Example
0 1 2 3
t
16tint0 tfinal10 tstep.01
ttinttsteptfinal x5((tgt0)(tlt4)) subplot
(3,1,1), plot(t,x) axis(0 10 0
10) h3((tgt0)(tlt2)) subplot(3,1,2),plot(t,h)
axis(0 10 0 10) axis(0 10 0 5) t22tinttstep
2tfinal yconv(x,h)tstep subplot(3,1,3),plot(
t2,y) axis(0 10 0 40)
17(No Transcript)
18Example 2
- Convolve the following functions
x1(t)
1.0
0 1 t
19Example 2
Reversal
20Example 2
x2(t-t)
0 t 1 t
-1
Shift reversed function
21Example 2
22Example 2
x1(t)
x2(t-t)
0 1 t t
-1
t-1
Overlay shift reversed function onto other
function and integrate overlapping section
23Example 2
x1(t)x2(t)
0 1 2
24Example 3
25Example 3
5
3
t
4
0
26Example 3
5
t
Reverse h(t)
27Example 3
5
t
t
4
Shift the reversed h(t) by t
28Example 3
4
29Example 3
30Example 3
31Example 3
32Example 3
33 34Commutativity of Convolution Operation
- The actions of flipping and shifting can be
applied to EITHER function
35Example 4
- Repeat example 3 by flipping and shifting x(t)
rather than h(t)
0 t
36Example 4
0 t
37Example 4
0 t
t-4
38Example 4
39Example 4
Same result as before