Title: GTStrudl
1GTStrudl Modeling and Analysis Of Friction
Bearing Base Isolation
Michael H. Swanger, Ph.D. Georgia Tech CASE
Center GTSUG 2007 June 18-21, 2007 Jupiter, FL
2Topics
- Background
- Friction Bearing Mechanics and Modeling
Parameters - Basic Behavior Examples
- Plane Frame Example Comparison of Rigid vs
Isolated - Nonlinear Dynamic Analysis
3Background
Why Do Base Isolation?
Conventional Rigid Foundation
Foundation with Base Isolation
4Background
Examples of Base Isolation Systems
Rubber Bearing (RB) System (oiles)
5Background
Examples of Base Isolation Systems
Lead Rubber Bearing (LRB) System (oiles)
6Background
Examples of Base Isolation Systems
Friction Pendulum System (FPS) (oiles)
7Background
Examples of Base Isolation Systems
8Background
Examples of Base Isolation Systems
9Background
R D Modeling of Friction Bearing Systems
- Reinhorn, Constantinou, et. al., SUNY Buffalo
- Teflon bearing behavior
- 3D-BASIS Computer Program for Nonlinear
Dynamic - Analysis of Three-Dimensional Base Isolated
Structures - Whittaker, Fenves, SUNY Buffalo, University of
California - Berkeley
- Almazan, De la Llera, University of Chile
10Mechanics and Modeling Parameters
Equilibrium wrt one-dimensional, horizontal
motion
11Mechanics and Modeling Parameters
Equilibrium wrt horizontal, bi-axial motion
coupled plasticity
12Mechanics and Modeling Parameters
The FE model one-dimensional, horizontal motion
V
UV
E
KAX
S
H
UY
13Mechanics and Modeling Parameters
Variable Coefficient of Friction
With Respect to Velocity and Pressure
µmin coefficient of friction at very low
velocity, µmax0 coefficient of friction at zero
bearing pressure, µmaxp coefficient of friction
at very high bearing pressures, e constant that
controls the transition of µmax between very low
and very high bearing pressures, a constant
that controls the transition of µ between low and
high relative slider velocities, FB the
bearing force, ACS effective contact area of
the slider with the bearing surface.
14Mechanics and Modeling Parameters
Variable Coefficient of Friction
µmin 0.04 µmax0 0.12 µmaxp 0.05 a 0.6 e
0.012
µ (f) vs. Slider Velocity
µmax vs. Bearing Pressure
15Mechanics and Modeling Parameters
The BASE ISOLATION ELEMENT Command
16Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
Bridge Pier and Superstructure Separated by a
Base Isolation Element
17Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
Global PLANE OF MOTION Relevant Global Sliding Displacement Degrees of Freedom Bearing Displacement Degree of Freedom
XY UX, UY UZ
XZ UX, UZ UY
YZ UY, UZ UX
18Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
19Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
V
RD
UV
E
KAX
S
H
UY
20Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
21Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
At first onset of sliding Friction Force
vBFµFB, vBF gt 1.0 vBF 1.0 by default
22Basic Behavior Examples
- Flat sliding surface, constant bearing pressure,
- constant friction µ 0.05
- Flat sliding surface, constant bearing pressure,
- variable friction, µmax 0.05
- Flat sliding surface, varying bearing pressure,
- constant friction µ 0.05
- Flat sliding surface, constant bearing pressure,
- constant friction µ 0.05, BF 1.5
- 5. Convex sliding surface, RD 50 inches,
- constant bearing pressure, constant friction µ
0.05 - 6. Plane frame rigid vs isolated comparison
23Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
- Constant Friction µ 0.05
L 1 in, µ 0.05
24Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
- Constant Friction µ 0.05
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ UY 0.005 KAX 1.E8 FRICTION CONSTANT
FC 0.05 END PRINT ELEMENT PROPERTIES LOAD
1 JOINT LOADS 1 FORCE Y -10000.0
25Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
- Constant Friction µ 0.05
MAXIMUM NUMBER OF CYCLES 10 CONVERGENCE TOLERANCE
EQUIL 0.001 NONLINEAR ANALYSIS UNITS CYCLES
SECONDS TRANSIENT LOAD 'TL1' JOINT 1 FORCE X
FUNCT SINE AMPL 0.5E10 FREQ 2.0 INTEGRATE -
FROM 0.000000 TO 1.0 AT 0.001 END TRANSIENT
LOAD LOAD LIST 'TL1' DYNAMIC PARAMETERS STORE
VELOCITY ON STORE ACCELERATION ON STORE
ABSOLUTE ACCELERATION USE EXTERNAL FILE SOLVER
MAXIMUM NUMBER OF EQUILIBRIUM CYCLES 20
CONVERGENCE TOLERANCE ENERGY 0.001 INITIAL
STRESS LOAD '1' PRINT MAX END OF DYNAMIC
PARAMETERS INERTIA OF JOINTS WEIGHT EXISTING
TRANSL ALL 1.0 DAMPING PROPORTIONAL TO STIFFN
0.005 DYNAMIC ANALYSIS NONLINEAR BETA 0.250000
26Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
- Constant Friction µ 0.05
BASE ISOLATION ELEMENT ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ UY 0.005 KAX 1.E8 FRICTION CONSTANT
FC 0.05 END PRINT ELEMENT PROPERTIES
Friction Bearing Element Data
Element
Start Jnt End Jnt ------- ---------
------- FB1 XZ 2 1
ACS 0.0000E00 RD 0.0000E00 Kax
0.1000E09 Uy 0.5000E-02
TH1 0.0000E00 TH2
0.0000E00 TH3 0.0000E00
Fc 0.5000E-01 Fmin
0.0000E00 Fmax0 0.0000E00 Fmaxp
0.0000E00
BF 1.000 Alpha 0.0000E00 Epsilon
0.0000E00
27Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
- Constant Friction µ 0.05
28Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
- Constant Friction µ 0.05
29Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT ELEMENT DATA
'FB1' INCIDENCES START 2 END 1 TYPE FRICTION
BEARING - PLANE XZ UY 0.005 KAX 1.E8 ACS
10.0 - FRICTION VARIABLE ALPHA 0.6 EPS 0.012
FMIN 0.03 - FMAX0 0.12 FMAXP
0.05 END LOAD 1 JOINT LOADS 1 FORCE Y -10000.0
30Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
BASE ISOLATION ELEMENT DATA 'FB1' INCIDENCES
START 2 END 1 TYPE FRICTION BEARING - PLANE
XZ UY 0.005 KAX 1.E8 ACS 10.0 - FRICTION
VARIABLE ALPHA 0.6 EPS 0.012 FMIN 0.03 -
FMAX0 0.12 FMAXP 0.05 END
µmax0 0.12, µmaxp 0.05, µmin 0.03 e
0.012 FB 10000.0 lbs, ACS 10.0 in2 µmax
0.12 (0.12 0.05)tanh(12.0) 0.05
31Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
µmax 0.05, µmin 0.03 a 0.6
32Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
33Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
34Basic Behavior Examples
- Flat Sliding Surface, Varying Bearing Pressure,
- Constant Friction µ 0.05
L 1 in, µ 0.05
35Basic Behavior Examples
- Flat Sliding Surface, Varying Bearing Pressure,
- Constant Friction µ 0.05
MAXIMUM NUMBER OF CYCLES 10 CONVERGENCE TOLERANCE
EQUIL 0.001 NONLINEAR ANALYSIS UNITS CYCLES
SECONDS TRANSIENT LOAD 'TL1' JOINT 1 FORCE X
FUNCT SINE AMPL 0.5E10 FREQ 2.0 JOINT 1 FORCE Y
FUNCT SINE AMPL 2000.0 FREQ 8.0 INTEGRATE -
FROM 0.000000 TO 1.0 AT 0.001 END TRANSIENT
LOAD LOAD LIST 'TL1' DYNAMIC PARAMETERS STORE
VELOCITY ON STORE ACCELERATION ON STORE
ABSOLUTE ACCELERATION USE EXTERNAL FILE SOLVER
MAXIMUM NUMBER OF EQUILIBRIUM CYCLES 20
CONVERGENCE TOLERANCE ENERGY 0.001 INITIAL
STRESS LOAD '1' PRINT MAX END OF DYNAMIC
PARAMETERS INERTIA OF JOINTS WEIGHT EXISTING
TRANSL ALL 1.0 DAMPING PROPORTIONAL TO STIFFN
0.005 DYNAMIC ANALYSIS NONLINEAR BETA 0.250000
36Basic Behavior Examples
- Flat Sliding Surface, Varying Bearing Pressure,
- Constant Friction µ 0.05
37Basic Behavior Examples
- Flat Sliding Surface, Varying Bearing Pressure,
- Constant Friction µ 0.05
38Basic Behavior Examples
- Flat Sliding Surface, Varying Bearing Pressure,
- Constant Friction µ 0.05
39Basic Behavior Examples
4. Flat Sliding Surface, Constant Bearing
Pressure, Constant Friction µ 0.05, BF 1.5
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ UY 0.005 KAX 1.E8 FRICTION CONSTANT
FC 0.05 BF 1.5 END PRINT ELEMENT
PROPERTIES LOAD 1 JOINT LOADS 1 FORCE Y
-10000.0
40Basic Behavior Examples
4. Flat Sliding Surface, Constant Bearing
Pressure, Constant Friction µ 0.05, BF 1.5
41Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
Constant Friction µ 0.05, BF 1.5
42Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
Constant Friction µ 0.05, BF 1.5
43Basic Behavior Examples
- Flat Sliding Surface, Constant Bearing Pressure,
Constant Friction µ 0.05, BF 1.5
44Basic Behavior Examples
5. Convex Sliding Surface, RD 50 Inches,
Constant Bearing Pressure, Constant Friction µ
.05
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ RD 50.0 UY 0.005 KAX 1.E8 FRICTION
CONSTANT FC 0.05 END PRINT ELEMENT
PROPERTIES LOAD 1 JOINT LOADS 1 FORCE Y
-10000.0
45Basic Behavior Examples
5. Convex Sliding Surface, RD 50 Inches,
Constant Bearing Pressure, Constant Friction µ
0.05
46Basic Behavior Examples
5. Convex Sliding Surface, RD 50 Inches,
Constant Bearing Pressure, Constant Friction µ
0.05
47Plane Frame Example Comparison of Rigid vs
Isolated
48Plane Frame Example Comparison of Rigid vs
Isolated
Rigid
STATUS SUPPORT JOINTS 1 TO 6 JOINT RELEASES 1
TO 6 MOMENT Z
Isolated
STATUS SUPPORT JOINTS 1 TO 6 JOINT RELEASES 1
TO 6 FORCE X Y MOMENT Z UNITS INCHES LBS BASE
ISOLATION ELEMENT DATA 'FB1' TO 'FB6' ATTACH TO
1 TO 7 TYPE FRICTION BEARING - PLANE XZ RD
50.0 UY 0.005 KAX 1.E8 FRICTION CONSTANT FC
0.05 END
49Plane Frame Example Comparison of Rigid vs
Isolated
Nonlinear Static and Dynamic Analysis Operations
LOAD LIST 'EQ2' DYNAMIC PARAMETERS STORE
VELOCITY ON STORE ACCELERATION ON STORE
ABSOLUTE ACCELERATION USE EXTERNAL FILE SOLVER
MAXIMUM NUMBER OF EQUILIBRIUM CYCLES 20
CONVERGENCE TOLERANCE ENERGY 0.001 INITIAL
STRESS LOAD '1' PRINT MAX END OF DYNAMIC
PARAMETERS DYNAMIC ANALYSIS NONLINEAR BETA
0.25 COMPUTE TRANSIENT FORCES REACTIONS
UNITS INCHES KIPS DEAD LOAD 1 DIR -Y ALL
MEMBERS MAXIMUM NUMBER OF CYCLES 10 CONVERGENCE
TOLERANCE EQUILIBRIUM 0.001 LOAD LIST 1 NONLINEAR
ANALYSIS INERTIA OF JOINTS LUMPED DAMPING
PROPORTIONAL TO STIFFN 0.005 TRANSIENT LOADING
'EQ2' SUPPORT ACCELERATION TRANSLATION X FILE
'ELCENTRO' INTEGRATE FROM 0.0 TO 10.0 AT
0.001 END TRANSIENT LOAD
50Plane Frame Example Comparison of Rigid vs
Isolated
Rigid Frame UXmax, T 2.49 seconds T1
.131 seconds
51Plane Frame Example Comparison of Rigid vs
Isolated
X 2.767E00 Y -5.237E-04 Z 0.0
X 2.757E00 Y -3.376E-05 Z 0.0
Isolated Frame UXmax, T 5.549 seconds T1eff
2.26 secs
52Plane Frame Example Comparison of Rigid vs
Isolated
Convensional Rigid Foundation
Foundation with Base Isolation
53Plane Frame Example Comparison of Rigid vs
Isolated
54Plane Frame Example Comparison of Rigid vs
Isolated
55The Friction Bearing Isolation Element
Summary
- Nonlinear, requiring nonlinear static and dynamic
analyses - Three global DOFs Translation X, Y, and Z,
- coupled plasticity, bilateral interaction
- 3. Compression only
- 4. Equilibrium/force recovery assumes small
displacements, - nonlinear geometric effects neglected
- 5. Can be oriented wrt a local coordinate system
- 6. General bearing force, variable coefficient of
friction
56Nonlinear Dynamic Analysis
Summary
- Analysis Parameters and Operation
- Transient Loading Time Step Size
57Nonlinear Dynamic Analysis
Summary Analysis Parameters and Operation
vb (BETA) 0.25 constant average acceleration
integration method (unconditionally stable for
linear analysis)
58Nonlinear Dynamic Analysis
Summary Analysis Parameters and Operation
59Nonlinear Dynamic Analysis
Summary Analysis Parameters and Operation
60Nonlinear Dynamic Analysis
Summary Transient Loading Time Step Size
TRANSIENT LOADING 'EQ2' SUPPORT ACCELERATION
TRANSLATION X FILE 'ELCENTRO' INTEGRATE FROM
0.0 TO 10.0 AT 0.001 END TRANSIENT LOAD
- Size of time step size must be sufficiently small
to capture - the time points corresponding to the loading
extreme points - Size of time step must be sufficiently small to
capture - response of structure
- ?t Tmin/10.0 seconds
- For f cutoff 33 Hz, Tmin 0.0303
seconds, ?t 0.003 seconds