GTStrudl - PowerPoint PPT Presentation

1 / 60
About This Presentation
Title:

GTStrudl

Description:

Flat sliding surface, constant bearing pressure, constant friction = 0.05 ... Flat Sliding Surface, Constant Bearing Pressure, Constant Friction = 0.05 ... – PowerPoint PPT presentation

Number of Views:96
Avg rating:3.0/5.0
Slides: 61
Provided by: michaelhs
Category:
Tags: flat | gtstrudl

less

Transcript and Presenter's Notes

Title: GTStrudl


1
GTStrudl Modeling and Analysis Of Friction
Bearing Base Isolation
Michael H. Swanger, Ph.D. Georgia Tech CASE
Center GTSUG 2007 June 18-21, 2007 Jupiter, FL
2
Topics
  1. Background
  2. Friction Bearing Mechanics and Modeling
    Parameters
  3. Basic Behavior Examples
  4. Plane Frame Example Comparison of Rigid vs
    Isolated
  5. Nonlinear Dynamic Analysis

3
Background
Why Do Base Isolation?
Conventional Rigid Foundation
Foundation with Base Isolation
4
Background
Examples of Base Isolation Systems
Rubber Bearing (RB) System (oiles)
5
Background
Examples of Base Isolation Systems
Lead Rubber Bearing (LRB) System (oiles)
6
Background
Examples of Base Isolation Systems
Friction Pendulum System (FPS) (oiles)
7
Background
Examples of Base Isolation Systems
8
Background
Examples of Base Isolation Systems
9
Background
R D Modeling of Friction Bearing Systems
  • Reinhorn, Constantinou, et. al., SUNY Buffalo
  • Teflon bearing behavior
  • 3D-BASIS Computer Program for Nonlinear
    Dynamic
  • Analysis of Three-Dimensional Base Isolated
    Structures
  • Whittaker, Fenves, SUNY Buffalo, University of
    California
  • Berkeley
  • Almazan, De la Llera, University of Chile

10
Mechanics and Modeling Parameters
Equilibrium wrt one-dimensional, horizontal
motion
11
Mechanics and Modeling Parameters
Equilibrium wrt horizontal, bi-axial motion
coupled plasticity
12
Mechanics and Modeling Parameters
The FE model one-dimensional, horizontal motion
V
UV
E
KAX
S
H
UY
13
Mechanics and Modeling Parameters
Variable Coefficient of Friction
With Respect to Velocity and Pressure
µmin coefficient of friction at very low
velocity, µmax0 coefficient of friction at zero
bearing pressure, µmaxp coefficient of friction
at very high bearing pressures, e constant that
controls the transition of µmax between very low
and very high bearing pressures, a constant
that controls the transition of µ between low and
high relative slider velocities, FB the
bearing force, ACS effective contact area of
the slider with the bearing surface.
14
Mechanics and Modeling Parameters
Variable Coefficient of Friction
µmin 0.04 µmax0 0.12 µmaxp 0.05 a 0.6 e
0.012
µ (f) vs. Slider Velocity
µmax vs. Bearing Pressure
15
Mechanics and Modeling Parameters
The BASE ISOLATION ELEMENT Command
16
Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
Bridge Pier and Superstructure Separated by a
Base Isolation Element
17
Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
Global PLANE OF MOTION Relevant Global Sliding Displacement Degrees of Freedom Bearing Displacement Degree of Freedom
XY UX, UY UZ
XZ UX, UZ UY
YZ UY, UZ UX
18
Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
19
Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
V
RD
UV
E
KAX
S
H
UY
20
Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
21
Mechanics and Modeling Parameters
BASE ISOLATION Command Elements
At first onset of sliding Friction Force
vBFµFB, vBF gt 1.0 vBF 1.0 by default
22
Basic Behavior Examples
  • Flat sliding surface, constant bearing pressure,
  • constant friction µ 0.05
  • Flat sliding surface, constant bearing pressure,
  • variable friction, µmax 0.05
  • Flat sliding surface, varying bearing pressure,
  • constant friction µ 0.05
  • Flat sliding surface, constant bearing pressure,
  • constant friction µ 0.05, BF 1.5
  • 5. Convex sliding surface, RD 50 inches,
  • constant bearing pressure, constant friction µ
    0.05
  • 6. Plane frame rigid vs isolated comparison

23
Basic Behavior Examples
  • Flat Sliding Surface, Constant Bearing Pressure,
  • Constant Friction µ 0.05

L 1 in, µ 0.05
24
Basic Behavior Examples
  • Flat Sliding Surface, Constant Bearing Pressure,
  • Constant Friction µ 0.05

UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ UY 0.005 KAX 1.E8 FRICTION CONSTANT
FC 0.05 END PRINT ELEMENT PROPERTIES LOAD
1 JOINT LOADS 1 FORCE Y -10000.0
25
Basic Behavior Examples
  • Flat Sliding Surface, Constant Bearing Pressure,
  • Constant Friction µ 0.05

MAXIMUM NUMBER OF CYCLES 10 CONVERGENCE TOLERANCE
EQUIL 0.001 NONLINEAR ANALYSIS UNITS CYCLES
SECONDS TRANSIENT LOAD 'TL1' JOINT 1 FORCE X
FUNCT SINE AMPL 0.5E10 FREQ 2.0 INTEGRATE -
FROM 0.000000 TO 1.0 AT 0.001 END TRANSIENT
LOAD LOAD LIST 'TL1' DYNAMIC PARAMETERS STORE
VELOCITY ON STORE ACCELERATION ON STORE
ABSOLUTE ACCELERATION USE EXTERNAL FILE SOLVER
MAXIMUM NUMBER OF EQUILIBRIUM CYCLES 20
CONVERGENCE TOLERANCE ENERGY 0.001 INITIAL
STRESS LOAD '1' PRINT MAX END OF DYNAMIC
PARAMETERS INERTIA OF JOINTS WEIGHT EXISTING
TRANSL ALL 1.0 DAMPING PROPORTIONAL TO STIFFN
0.005 DYNAMIC ANALYSIS NONLINEAR BETA 0.250000
26
Basic Behavior Examples
  • Flat Sliding Surface, Constant Bearing Pressure,
  • Constant Friction µ 0.05

BASE ISOLATION ELEMENT ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ UY 0.005 KAX 1.E8 FRICTION CONSTANT
FC 0.05 END PRINT ELEMENT PROPERTIES
Friction Bearing Element Data
Element
Start Jnt End Jnt ------- ---------
------- FB1 XZ 2 1
ACS 0.0000E00 RD 0.0000E00 Kax
0.1000E09 Uy 0.5000E-02
TH1 0.0000E00 TH2
0.0000E00 TH3 0.0000E00
Fc 0.5000E-01 Fmin
0.0000E00 Fmax0 0.0000E00 Fmaxp
0.0000E00
BF 1.000 Alpha 0.0000E00 Epsilon
0.0000E00
27
Basic Behavior Examples
  • Flat Sliding Surface, Constant Bearing Pressure,
  • Constant Friction µ 0.05

28
Basic Behavior Examples
  • Flat Sliding Surface, Constant Bearing Pressure,
  • Constant Friction µ 0.05

29
Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT ELEMENT DATA
'FB1' INCIDENCES START 2 END 1 TYPE FRICTION
BEARING - PLANE XZ UY 0.005 KAX 1.E8 ACS
10.0 - FRICTION VARIABLE ALPHA 0.6 EPS 0.012
FMIN 0.03 - FMAX0 0.12 FMAXP
0.05 END LOAD 1 JOINT LOADS 1 FORCE Y -10000.0
30
Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
BASE ISOLATION ELEMENT DATA 'FB1' INCIDENCES
START 2 END 1 TYPE FRICTION BEARING - PLANE
XZ UY 0.005 KAX 1.E8 ACS 10.0 - FRICTION
VARIABLE ALPHA 0.6 EPS 0.012 FMIN 0.03 -
FMAX0 0.12 FMAXP 0.05 END
µmax0 0.12, µmaxp 0.05, µmin 0.03 e
0.012 FB 10000.0 lbs, ACS 10.0 in2 µmax
0.12 (0.12 0.05)tanh(12.0) 0.05
31
Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
µmax 0.05, µmin 0.03 a 0.6
32
Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
33
Basic Behavior Examples
2. Flat Sliding Surface, Constant Bearing
Pressure, Variable Friction µmax 0.05
34
Basic Behavior Examples
  • Flat Sliding Surface, Varying Bearing Pressure,
  • Constant Friction µ 0.05

L 1 in, µ 0.05
35
Basic Behavior Examples
  • Flat Sliding Surface, Varying Bearing Pressure,
  • Constant Friction µ 0.05

MAXIMUM NUMBER OF CYCLES 10 CONVERGENCE TOLERANCE
EQUIL 0.001 NONLINEAR ANALYSIS UNITS CYCLES
SECONDS TRANSIENT LOAD 'TL1' JOINT 1 FORCE X
FUNCT SINE AMPL 0.5E10 FREQ 2.0 JOINT 1 FORCE Y
FUNCT SINE AMPL 2000.0 FREQ 8.0 INTEGRATE -
FROM 0.000000 TO 1.0 AT 0.001 END TRANSIENT
LOAD LOAD LIST 'TL1' DYNAMIC PARAMETERS STORE
VELOCITY ON STORE ACCELERATION ON STORE
ABSOLUTE ACCELERATION USE EXTERNAL FILE SOLVER
MAXIMUM NUMBER OF EQUILIBRIUM CYCLES 20
CONVERGENCE TOLERANCE ENERGY 0.001 INITIAL
STRESS LOAD '1' PRINT MAX END OF DYNAMIC
PARAMETERS INERTIA OF JOINTS WEIGHT EXISTING
TRANSL ALL 1.0 DAMPING PROPORTIONAL TO STIFFN
0.005 DYNAMIC ANALYSIS NONLINEAR BETA 0.250000
36
Basic Behavior Examples
  • Flat Sliding Surface, Varying Bearing Pressure,
  • Constant Friction µ 0.05

37
Basic Behavior Examples
  • Flat Sliding Surface, Varying Bearing Pressure,
  • Constant Friction µ 0.05

38
Basic Behavior Examples
  • Flat Sliding Surface, Varying Bearing Pressure,
  • Constant Friction µ 0.05

39
Basic Behavior Examples
4. Flat Sliding Surface, Constant Bearing
Pressure, Constant Friction µ 0.05, BF 1.5
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ UY 0.005 KAX 1.E8 FRICTION CONSTANT
FC 0.05 BF 1.5 END PRINT ELEMENT
PROPERTIES LOAD 1 JOINT LOADS 1 FORCE Y
-10000.0
40
Basic Behavior Examples
4. Flat Sliding Surface, Constant Bearing
Pressure, Constant Friction µ 0.05, BF 1.5
41
Basic Behavior Examples
  1. Flat Sliding Surface, Constant Bearing Pressure,
    Constant Friction µ 0.05, BF 1.5

42
Basic Behavior Examples
  1. Flat Sliding Surface, Constant Bearing Pressure,
    Constant Friction µ 0.05, BF 1.5

43
Basic Behavior Examples
  1. Flat Sliding Surface, Constant Bearing Pressure,
    Constant Friction µ 0.05, BF 1.5

44
Basic Behavior Examples
5. Convex Sliding Surface, RD 50 Inches,
Constant Bearing Pressure, Constant Friction µ
.05
UNITS INCHES LBS JOINT COORDINATES 1 0.0 0.0
2 0.0 -1.0 S 3 1.0 0.0 S 4 0.0 0.0
1.0 S TYPE SPACE TRUSS MEMBER INCIDENCES 1 1
3 2 1 4 CONSTANTS E 1.E10 MEMBER PROPERTIES
1 2 AX 1.0 BASE ISOLATION ELEMENT DATA 'FB1'
INCIDENCES START 2 END 1 TYPE FRICTION BEARING -
PLANE XZ RD 50.0 UY 0.005 KAX 1.E8 FRICTION
CONSTANT FC 0.05 END PRINT ELEMENT
PROPERTIES LOAD 1 JOINT LOADS 1 FORCE Y
-10000.0
45
Basic Behavior Examples
5. Convex Sliding Surface, RD 50 Inches,
Constant Bearing Pressure, Constant Friction µ
0.05
46
Basic Behavior Examples
5. Convex Sliding Surface, RD 50 Inches,
Constant Bearing Pressure, Constant Friction µ
0.05
47
Plane Frame Example Comparison of Rigid vs
Isolated
48
Plane Frame Example Comparison of Rigid vs
Isolated
Rigid
STATUS SUPPORT JOINTS 1 TO 6 JOINT RELEASES 1
TO 6 MOMENT Z
Isolated
STATUS SUPPORT JOINTS 1 TO 6 JOINT RELEASES 1
TO 6 FORCE X Y MOMENT Z UNITS INCHES LBS BASE
ISOLATION ELEMENT DATA 'FB1' TO 'FB6' ATTACH TO
1 TO 7 TYPE FRICTION BEARING - PLANE XZ RD
50.0 UY 0.005 KAX 1.E8 FRICTION CONSTANT FC
0.05 END
49
Plane Frame Example Comparison of Rigid vs
Isolated
Nonlinear Static and Dynamic Analysis Operations
LOAD LIST 'EQ2' DYNAMIC PARAMETERS STORE
VELOCITY ON STORE ACCELERATION ON STORE
ABSOLUTE ACCELERATION USE EXTERNAL FILE SOLVER
MAXIMUM NUMBER OF EQUILIBRIUM CYCLES 20
CONVERGENCE TOLERANCE ENERGY 0.001 INITIAL
STRESS LOAD '1' PRINT MAX END OF DYNAMIC
PARAMETERS DYNAMIC ANALYSIS NONLINEAR BETA
0.25 COMPUTE TRANSIENT FORCES REACTIONS
UNITS INCHES KIPS DEAD LOAD 1 DIR -Y ALL
MEMBERS MAXIMUM NUMBER OF CYCLES 10 CONVERGENCE
TOLERANCE EQUILIBRIUM 0.001 LOAD LIST 1 NONLINEAR
ANALYSIS INERTIA OF JOINTS LUMPED DAMPING
PROPORTIONAL TO STIFFN 0.005 TRANSIENT LOADING
'EQ2' SUPPORT ACCELERATION TRANSLATION X FILE
'ELCENTRO' INTEGRATE FROM 0.0 TO 10.0 AT
0.001 END TRANSIENT LOAD
50
Plane Frame Example Comparison of Rigid vs
Isolated
Rigid Frame UXmax, T 2.49 seconds T1
.131 seconds
51
Plane Frame Example Comparison of Rigid vs
Isolated
X 2.767E00 Y -5.237E-04 Z 0.0
X 2.757E00 Y -3.376E-05 Z 0.0
Isolated Frame UXmax, T 5.549 seconds T1eff

2.26 secs
52
Plane Frame Example Comparison of Rigid vs
Isolated
Convensional Rigid Foundation
Foundation with Base Isolation
53
Plane Frame Example Comparison of Rigid vs
Isolated
54
Plane Frame Example Comparison of Rigid vs
Isolated
55
The Friction Bearing Isolation Element
Summary
  • Nonlinear, requiring nonlinear static and dynamic
    analyses
  • Three global DOFs Translation X, Y, and Z,
  • coupled plasticity, bilateral interaction
  • 3. Compression only
  • 4. Equilibrium/force recovery assumes small
    displacements,
  • nonlinear geometric effects neglected
  • 5. Can be oriented wrt a local coordinate system
  • 6. General bearing force, variable coefficient of
    friction

56
Nonlinear Dynamic Analysis
Summary
  • Analysis Parameters and Operation
  • Transient Loading Time Step Size

57
Nonlinear Dynamic Analysis
Summary Analysis Parameters and Operation
vb (BETA) 0.25 constant average acceleration
integration method (unconditionally stable for
linear analysis)
58
Nonlinear Dynamic Analysis
Summary Analysis Parameters and Operation
59
Nonlinear Dynamic Analysis
Summary Analysis Parameters and Operation
60
Nonlinear Dynamic Analysis
Summary Transient Loading Time Step Size
TRANSIENT LOADING 'EQ2' SUPPORT ACCELERATION
TRANSLATION X FILE 'ELCENTRO' INTEGRATE FROM
0.0 TO 10.0 AT 0.001 END TRANSIENT LOAD
  • Size of time step size must be sufficiently small
    to capture
  • the time points corresponding to the loading
    extreme points
  • Size of time step must be sufficiently small to
    capture
  • response of structure
  • ?t Tmin/10.0 seconds
  • For f cutoff 33 Hz, Tmin 0.0303
    seconds, ?t 0.003 seconds
Write a Comment
User Comments (0)
About PowerShow.com