Title: QUaD: Measuring the Polarisation of the CMB
1Baryonic and Dark Matter
Next Generation Surveys Scientific,
Observational and Instrumental Challenges
Andy Taylor Institute for Astronomy, School of
Physics University of Edinburgh, UK
Gray Taylor et al 2005
2(No Transcript)
3Outline
- Scientific aims of future surveys
- Overview of future surveys
- Challenges for future surveys
- Summary
4Outline
- Scientific aims of future surveys
- Overview of future surveys
- Challenges for future surveys
- Summary
5Aims of Lensing Surveys
- What are the scientific challenges for lensing?
- Astrophysical
- Galaxy halo properties (galaxy-galaxy,
galaxy-quasar) - Clusters filaments (mass mapping vs Xray
starlight) - High-redshift Universe (gravitational telescopes)
- Fundamental
- Dark Matter properties ( DM mass interactions,
neutrino mass) - Dark Energy properties (EoS, evolution)
- Initial conditions (s8, ns, dns/dlnk)
- Testing Einstein Gravity
6Properties of Dark Matter
- Cold Dark Matter
- Mass break in matter power spectrum
- Thermal properties resolve smallest halos with
shear and flexion. - Neutrinos
- Mass another scale length in matter power
spectrum from free-streaming.
7Residual systematics (B modes)
Baryonic Dark Matter in COSMOS
Blue stellar mass Yellow galaxy number Red hot
gas
B-mode map
Massey, et al, Nature, 2007
8COSMOS 3-D Dark Matter Maps
Photon equation of motion
Right Ascension
Redshift
0.0 0.2 0.4 0.6 0.8
Declination
Massey, et al, Nature (2007)
9Observable Effects of Dark Energy
- Geometry DE changes the photon distance-redshift
relation r(z) - Angular diameter
-
distance DA -
Luminosity -
Distance DL - Dynamics Alters the growth of density
perturbations, d(t).
d
r
10Constraining w from the CMB Supernova
Energy-density scales with expansion as
Close to a Cosmological Constant. (assumes flat
Universe)
Spergel et al ApJ 2006
11Constraining w from the CMB Supernova
Lensing from CFHT
Energy-density scales with expansion as
Close to a Cosmological Constant. (assumes flat
Universe)
Spergel et al ApJ 2006, Tereno et al 2006
12Initial Conditions - Inflation
Spergel et al. ApJ, 2006
13Testing Einstein Gravity
- Three tests of gravity
- Model testing. Eg, DGP, TeVeS, braneworld.
- Generalized Einstein metric
- Consistency Relations
- Geometric wG versus Dynamic wD.
14Outline
- Scientific aims of future surveys
- Overview of future surveys
- Challenges for future surveys
- Summary
15Timeline
- Lensing (z) Spec
IR Space - 2004
SDSS/AAOmega - CFHTLS DEEP2
- 2006 LAMOST
- Pan-STARRS-1
UKIDSS - VST-KIDS VIKING/VHS
Planck - 2009 Pan-STARRS-4
- DES WFMOS JWST
JWST - 2011 HSC/Subaru VIRUS
- 2012
- 2013 SNAP/JEDI/ADEPT/Destiny?
- 2014 LSST
- 2015
- 2016
- DUNE DUNE DUNE
- 2018
- 2019
- SKA (Radio) SKA (Radio)
- 2025 ELT
162003-2008 CFHTLS
- Canada-France-Hawaii 3.6m Telescope
- Mauna Kea
- 40 CCD, 340 Mpixels
- 1 sq deg MegaCam
- Surveys
- Wide 170 sq deg
- ugriz, i24.5
- Deep 4 sq deg, r28
172007-2010 Pan-STARRS-1
- Panoramic Survey Telescope and Rapid
- Response System (Pan-STARRS).
- Hawaii, MPIA, Taiwan,
- Harvard, Johns Hopkins,
- UK (Edinburgh, Belfast, Durham),
- 1.8 meter primary
- 1.4Gpixel camera.
- 7 sq deg fov.
- Medium Deep Survey
- 3p Survey
- g, r, i, z, y (r24.5)
- PS4 4xPS1 (2009).
182008-2013 VST-KIDS VIKING
- ESOs Kilo-Degree Survey
- 2m primary
- 184Mpixels 1sqdeg fov OmegaCAM
- 1,500 sq deg
- ugriz
- VIKING
- (VISTA Kilo-degree INfrared Galaxy survey)
- 1500 sq deg in parallel on VISTA
- Z,Y,J,H,Ks
192010-2015 DES
- The Dark Energy Survey.
- 4-metre Blanco at CTIO (South)
- 500 Megapixel, 3 sqdeg fov camera
- 5 yr survey (30 of time).
- g,r,i,z over 5000 sq deg
- r 24.1 (10sig)
- 4 dark energy probes
- WL, BAOs, SN Clusters
202011-2016 Subaru-HyperSuprimeCam
- 8.3m Primary
- 3.14 sq deg fov
- 1.4 Gpixel camera
- HyperSuprimeCam
- 3500 sq deg/year
- 17,500 sq deg (5 yrs)
- ugriz?
?
212014-2024 LSST
- Large Synoptic Survey Telescope (LSST)
- 8.4m (effectively 6.5m) Primary
- 3.2 Gpixel, 9.6 sq deg fov camera
- ugrizY
- Cerro Pachon, Chile
- 30Tbyte per night
222017-2021 DUNE Dark UNiverse Explorer
- Proposal to ESA Cosmic Visions programme.
- 1.2m satellite telescope
- r-i-z Y,J,H
- 0.5 sq deg fov
- 3-year weak lensing survey
- 20,000 sq deg
- AB24.5 (10sig), zm0.9
- n035/sq arcmin
- Ground-based optical complement
- needed for photo-zs.
232020-2025 SKA
- Square Kilometre Array (SKA)
- Radio interferometer.
- Frequency range 100 MHz - 25 GHz
- 1 sq deg fov (1.4GHz) - 200 sq deg (0.7GHz)
- 20,000 sqdeg
- zm1.0
- sz0 (spec)
- n010/sqarcmin
- (useable HI sources)
24Grasp vs. Start Date
SKA108
103 102 10 1
LSST
HSC
PS4
DES
Grasp (D2fov)
Dark Energy Survey
Pan-STARRS-1
PS1
Grasp for optical surveys doubles every 2.5 yrs
CFHT
VST-KIDS
170 sq deg
DUNE
1700 sq deg
2002 2004 2006 2008 2010 2012
2014 2016 2018 2020
Start Date
25Survey Area vs. End Date
104 103 102
PS1
PS4
SKA
LSST
DUNE
HSC
DES
Area sqdeg
Dark Energy Survey
Pan-STARRS-1
VST-KIDS
170 sq deg
CFHT-W
1700 sq deg
2008 2010 2012 2014 2016
2018 2020 2022 2024 2026
End Date
26Survey Depth vs. Area
104 103 102
PS1
DUNE
PS4/ SKA
LSST
HSC
DES
Area sqdeg
VST-KIDS
Constant Time
CFHT-W
0.6 0.7 0.8 0.9 1.0
1.1 1.2 1.3
Depth (Median Redshift)
27Dark Energy Figure of Merit (FoM)
- Dark Energy Task Force Figure of Merit
- Define pivot redshift, zp
-
wa
w(z)
wp
Dw0
w -1
zp
z
0
283-D Shear Power
(e.g. Heavens 2003, Kitching, Heavens Taylor
2005)
Background sources
293-D Shear Ratios
- (Jain Taylor 2003, Taylor, Kitching, Bacon,
Heavens 2005)
Background sources
Dark matter halos
Observer
- Signal depends on (Wm, Wv, w0, wa) and is
insensitive to clustering.
30FoM for Dark Energy from Lensing
3-D shear power and shear-ratios combined with
Planck Explorer CMB survey (2008)
Current limit
1/FoM
CFHT
KIDS
PS1
SKA
DES
HSC
PS4
FoM doubles every 2.5 yrs
DUNE
LSST
Saturation
2023
End Date
(with Tom Kitching)
31Outline
- Scientific aims of future surveys
- Overview of future surveys
- Challenges for future surveys
- Summary
32Effect of Systematics
- What is the effect of systematics in results?
- Can estimate effect using Fisher Matrix
formalism - Eg for a straight line zero-point fit
y
b
x
(Taylor, Kitching Heavens, 2006)
33Image Distortions
- Image distortions (Kitching, Taylor
Heavens 2007) - calibration rotation bias.
34Image Distortions
- Image distortions calibration, rotation, bias.
- Effect of these on constant w
- Shear Power no 1st order effect from gbias
- Shear-ratios No bias to 1st order.
- Require
35Observational Challenges
- Photometric redshifts calibration, bias,
outliers
zphot
zspec
Abdalla et al (2007)
(Abdalla et al, 2007 Kitching, Taylor Heavens
2007)
36Observational Challenges
- Photometric redshifts calibration, bias,
outliers - Can estimate bias effect from Fisher analysis
- Shear Power
- Shear-ratios
Shear-ratio
37Photometric Redshift Challenges
- 5-optical 3-IR? VST-KIDS/VIKING.
- Do we need U-band? VST-KIDS
- Calibration with spectroscopic surveys
- How many? 105? VLT, WFMOS, ELTs?
- Need synergy with IR spectroscopic surveys.
Abdalla et al (2007)
38Intrinsic Alignment Challenges
- Two alignment effects
- Intrinsic-Intrinsic alignments
- Galaxy-Intrinsic alignment
(Bridle King, 2007 Kitching, Taylor Heavens
2007)
39Intrinsic Alignment Challenges
- Model using Heymans et al (2006).
- Find no effect on shear-ratio signal (averaged
out), - but enters noise.
- Minimal effect on shear-power (but see Bridle
King 2007). - Using signal where alignment contribution is
small.
40Marginalize over Nuisance Parameters
- Use data to estimate these parameters
(self-calibration). - Marginalisation over uncertainties will increase
error
w
Dwmarg
Dwcond
gbias
41Marginalize over Nuisance Parameters
- Effect of marginalisation over image distortion
uncertainties, for Shear Ratios Planck - For a DUNE mission FoM (Dwp)
- Shear Power Shear-Ratio
Combined - Baseline 500 (0.015) 150 (0.024)
915 (0.012) - PzIAg 116 (0.03) 70 (0.03)
670 (0.014) - 0.1 prior 440 (0.02) 100 (0.028)
900 (0.012)
Mostly photo-zs
Mostly Image Distortions
(Kitching, Taylor Heavens 2007)
42Nonlinear Matter Distribution
- Non-linear matter power spectrum.
- Fitting functions not accurate
- Need MC N-body sims
- Baryons?
- Non-Gaussian corrections to the shear field.
- Covariance of power (4pt-fn)
- Higher-order correlations
- Non-Gaussian likelihoods
log Clgg
log l
P(k)
k
43Data Analysis Challenges
- Tera/Pico-Bytes of data to push through pipeline.
- (eg. LSST raw1500GB Cats400GB)
- 4 layers
- Data acquisition, book keeping
- Raw Data Reduction (registration)
- Shape analysis (KSB, shapelets, K2K, automated)
- Science analysis (map making, power spectra, etc)
- How do we simulate large dynamic range?
- And Monte-Carlo surveys 1000 times?
- c.f. CMB temperature polarisation experiments
- (see A. Challinors Talk).
44Organizational Challenges
- How to coordinate the effort?
- EU Research-Training Network.
- DUEL (Dark Universe with Extragalactic Lensing)
- Exploit Cosmological Lensing from
- CFHTLS, Pan-STARRS, VST-KIDS
- Plan for future surveys (DUNE)
- 8 Network Partners
- Edinburgh, Paris, Bonn, Heidelberg, Munich,
Leiden, Naples, British Columbia - 7 Postdocs 7 PhD students across network.
- Training exchange of methods data.
45Conclusions
- Map dark matter in 3-D over all sky to z1.
- Expect DE FoM to double every 2.5 years.
- Dark Energy probes saturate beyond z1.
- Bias in nuisance parameters biases w.
- Self-calibration leads to doubling of errors.
- Can add extra priors, or combine WL methods.
- Optical/IR, Photo-z/Spec-z, Ground-Space
synergies - Major challenges in data analysis lie ahead!