QUaD: Measuring the Polarisation of the CMB - PowerPoint PPT Presentation

1 / 45
About This Presentation
Title:

QUaD: Measuring the Polarisation of the CMB

Description:

Galaxy halo properties (galaxy-galaxy, galaxy-quasar) ... needed for photo-z's. 9/2/09. IoP-RAS Meeting. 23. 2020-2025: SKA. Square Kilometre Array (SKA) ... – PowerPoint PPT presentation

Number of Views:91
Avg rating:3.0/5.0
Slides: 46
Provided by: andre510
Category:

less

Transcript and Presenter's Notes

Title: QUaD: Measuring the Polarisation of the CMB


1
Baryonic and Dark Matter
Next Generation Surveys Scientific,
Observational and Instrumental Challenges
Andy Taylor Institute for Astronomy, School of
Physics University of Edinburgh, UK
Gray Taylor et al 2005
2
(No Transcript)
3
Outline
  • Scientific aims of future surveys
  • Overview of future surveys
  • Challenges for future surveys
  • Summary

4
Outline
  • Scientific aims of future surveys
  • Overview of future surveys
  • Challenges for future surveys
  • Summary

5
Aims of Lensing Surveys
  • What are the scientific challenges for lensing?
  • Astrophysical
  • Galaxy halo properties (galaxy-galaxy,
    galaxy-quasar)
  • Clusters filaments (mass mapping vs Xray
    starlight)
  • High-redshift Universe (gravitational telescopes)
  • Fundamental
  • Dark Matter properties ( DM mass interactions,
    neutrino mass)
  • Dark Energy properties (EoS, evolution)
  • Initial conditions (s8, ns, dns/dlnk)
  • Testing Einstein Gravity

6
Properties of Dark Matter
  • Cold Dark Matter
  • Mass break in matter power spectrum
  • Thermal properties resolve smallest halos with
    shear and flexion.
  • Neutrinos
  • Mass another scale length in matter power
    spectrum from free-streaming.

7
Residual systematics (B modes)
Baryonic Dark Matter in COSMOS
Blue stellar mass Yellow galaxy number Red hot
gas
B-mode map
Massey, et al, Nature, 2007
8
COSMOS 3-D Dark Matter Maps
Photon equation of motion
Right Ascension
Redshift
0.0 0.2 0.4 0.6 0.8
Declination
Massey, et al, Nature (2007)
9
Observable Effects of Dark Energy
  • Geometry DE changes the photon distance-redshift
    relation r(z)
  • Angular diameter

  • distance DA

  • Luminosity

  • Distance DL
  • Dynamics Alters the growth of density
    perturbations, d(t).

d
r
10
Constraining w from the CMB Supernova
Energy-density scales with expansion as
Close to a Cosmological Constant. (assumes flat
Universe)
Spergel et al ApJ 2006
11
Constraining w from the CMB Supernova
Lensing from CFHT
Energy-density scales with expansion as
Close to a Cosmological Constant. (assumes flat
Universe)
Spergel et al ApJ 2006, Tereno et al 2006
12
Initial Conditions - Inflation
Spergel et al. ApJ, 2006
13
Testing Einstein Gravity
  • Three tests of gravity
  • Model testing. Eg, DGP, TeVeS, braneworld.
  • Generalized Einstein metric
  • Consistency Relations
  • Geometric wG versus Dynamic wD.

14
Outline
  • Scientific aims of future surveys
  • Overview of future surveys
  • Challenges for future surveys
  • Summary

15
Timeline
  • Lensing (z) Spec
    IR Space
  • 2004
    SDSS/AAOmega
  • CFHTLS DEEP2
  • 2006 LAMOST
  • Pan-STARRS-1
    UKIDSS
  • VST-KIDS VIKING/VHS
    Planck
  • 2009 Pan-STARRS-4
  • DES WFMOS JWST
    JWST
  • 2011 HSC/Subaru VIRUS
  • 2012
  • 2013 SNAP/JEDI/ADEPT/Destiny?
  • 2014 LSST
  • 2015
  • 2016
  • DUNE DUNE DUNE
  • 2018
  • 2019
  • SKA (Radio) SKA (Radio)
  • 2025 ELT

16
2003-2008 CFHTLS
  • Canada-France-Hawaii 3.6m Telescope
  • Mauna Kea
  • 40 CCD, 340 Mpixels
  • 1 sq deg MegaCam
  • Surveys
  • Wide 170 sq deg
  • ugriz, i24.5
  • Deep 4 sq deg, r28

17
2007-2010 Pan-STARRS-1
  • Panoramic Survey Telescope and Rapid
  • Response System (Pan-STARRS).
  • Hawaii, MPIA, Taiwan,
  • Harvard, Johns Hopkins,
  • UK (Edinburgh, Belfast, Durham),
  • 1.8 meter primary
  • 1.4Gpixel camera.
  • 7 sq deg fov.
  • Medium Deep Survey
  • 3p Survey
  • g, r, i, z, y (r24.5)
  • PS4 4xPS1 (2009).

18
2008-2013 VST-KIDS VIKING
  • ESOs Kilo-Degree Survey
  • 2m primary
  • 184Mpixels 1sqdeg fov OmegaCAM
  • 1,500 sq deg
  • ugriz
  • VIKING
  • (VISTA Kilo-degree INfrared Galaxy survey)
  • 1500 sq deg in parallel on VISTA
  • Z,Y,J,H,Ks

19
2010-2015 DES
  • The Dark Energy Survey.
  • 4-metre Blanco at CTIO (South)
  • 500 Megapixel, 3 sqdeg fov camera
  • 5 yr survey (30 of time).
  • g,r,i,z over 5000 sq deg
  • r 24.1 (10sig)
  • 4 dark energy probes
  • WL, BAOs, SN Clusters

20
2011-2016 Subaru-HyperSuprimeCam
  • 8.3m Primary
  • 3.14 sq deg fov
  • 1.4 Gpixel camera
  • HyperSuprimeCam
  • 3500 sq deg/year
  • 17,500 sq deg (5 yrs)
  • ugriz?

?
21
2014-2024 LSST
  • Large Synoptic Survey Telescope (LSST)
  • 8.4m (effectively 6.5m) Primary
  • 3.2 Gpixel, 9.6 sq deg fov camera
  • ugrizY
  • Cerro Pachon, Chile
  • 30Tbyte per night

22
2017-2021 DUNE Dark UNiverse Explorer
  • Proposal to ESA Cosmic Visions programme.
  • 1.2m satellite telescope
  • r-i-z Y,J,H
  • 0.5 sq deg fov
  • 3-year weak lensing survey
  • 20,000 sq deg
  • AB24.5 (10sig), zm0.9
  • n035/sq arcmin
  • Ground-based optical complement
  • needed for photo-zs.

23
2020-2025 SKA
  • Square Kilometre Array (SKA)
  • Radio interferometer.
  • Frequency range 100 MHz - 25 GHz
  • 1 sq deg fov (1.4GHz) - 200 sq deg (0.7GHz)
  • 20,000 sqdeg
  • zm1.0
  • sz0 (spec)
  • n010/sqarcmin
  • (useable HI sources)

24
Grasp vs. Start Date
SKA108
103 102 10 1
LSST
HSC
PS4
DES
Grasp (D2fov)
Dark Energy Survey
Pan-STARRS-1
PS1
Grasp for optical surveys doubles every 2.5 yrs
CFHT
VST-KIDS
170 sq deg
DUNE
1700 sq deg
2002 2004 2006 2008 2010 2012
2014 2016 2018 2020
Start Date
25
Survey Area vs. End Date
104 103 102
PS1
PS4
SKA
LSST
DUNE
HSC
DES
Area sqdeg
Dark Energy Survey
Pan-STARRS-1
VST-KIDS
170 sq deg
CFHT-W
1700 sq deg
2008 2010 2012 2014 2016
2018 2020 2022 2024 2026
End Date
26
Survey Depth vs. Area
104 103 102
PS1
DUNE
PS4/ SKA
LSST
HSC
DES
Area sqdeg
VST-KIDS
Constant Time
CFHT-W
0.6 0.7 0.8 0.9 1.0
1.1 1.2 1.3
Depth (Median Redshift)
27
Dark Energy Figure of Merit (FoM)
  • Dark Energy Task Force Figure of Merit
  • Define pivot redshift, zp

wa
w(z)
wp
Dw0
w -1
zp
z
0
28
3-D Shear Power
(e.g. Heavens 2003, Kitching, Heavens Taylor
2005)
Background sources
29
3-D Shear Ratios
  • (Jain Taylor 2003, Taylor, Kitching, Bacon,
    Heavens 2005)

Background sources
Dark matter halos
Observer
  • Signal depends on (Wm, Wv, w0, wa) and is
    insensitive to clustering.

30
FoM for Dark Energy from Lensing
3-D shear power and shear-ratios combined with
Planck Explorer CMB survey (2008)
Current limit
1/FoM
CFHT
KIDS
PS1
SKA
DES
HSC
PS4
FoM doubles every 2.5 yrs
DUNE
LSST
Saturation
2023
End Date
(with Tom Kitching)
31
Outline
  • Scientific aims of future surveys
  • Overview of future surveys
  • Challenges for future surveys
  • Summary

32
Effect of Systematics
  • What is the effect of systematics in results?
  • Can estimate effect using Fisher Matrix
    formalism
  • Eg for a straight line zero-point fit

y
b
x
(Taylor, Kitching Heavens, 2006)
33
Image Distortions
  • Image distortions (Kitching, Taylor
    Heavens 2007)
  • calibration rotation bias.

34
Image Distortions
  • Image distortions calibration, rotation, bias.
  • Effect of these on constant w
  • Shear Power no 1st order effect from gbias
  • Shear-ratios No bias to 1st order.
  • Require

35
Observational Challenges
  • Photometric redshifts calibration, bias,
    outliers

zphot
zspec
Abdalla et al (2007)
(Abdalla et al, 2007 Kitching, Taylor Heavens
2007)
36
Observational Challenges
  • Photometric redshifts calibration, bias,
    outliers
  • Can estimate bias effect from Fisher analysis
  • Shear Power
  • Shear-ratios

Shear-ratio
37
Photometric Redshift Challenges
  • 5-optical 3-IR? VST-KIDS/VIKING.
  • Do we need U-band? VST-KIDS
  • Calibration with spectroscopic surveys
  • How many? 105? VLT, WFMOS, ELTs?
  • Need synergy with IR spectroscopic surveys.

Abdalla et al (2007)
38
Intrinsic Alignment Challenges
  • Two alignment effects
  • Intrinsic-Intrinsic alignments
  • Galaxy-Intrinsic alignment

(Bridle King, 2007 Kitching, Taylor Heavens
2007)
39
Intrinsic Alignment Challenges
  • Model using Heymans et al (2006).
  • Find no effect on shear-ratio signal (averaged
    out),
  • but enters noise.
  • Minimal effect on shear-power (but see Bridle
    King 2007).
  • Using signal where alignment contribution is
    small.

40
Marginalize over Nuisance Parameters
  • Use data to estimate these parameters
    (self-calibration).
  • Marginalisation over uncertainties will increase
    error

w
Dwmarg
Dwcond
gbias
41
Marginalize over Nuisance Parameters
  • Effect of marginalisation over image distortion
    uncertainties, for Shear Ratios Planck
  • For a DUNE mission FoM (Dwp)
  • Shear Power Shear-Ratio
    Combined
  • Baseline 500 (0.015) 150 (0.024)
    915 (0.012)
  • PzIAg 116 (0.03) 70 (0.03)
    670 (0.014)
  • 0.1 prior 440 (0.02) 100 (0.028)
    900 (0.012)

Mostly photo-zs
Mostly Image Distortions
(Kitching, Taylor Heavens 2007)
42
Nonlinear Matter Distribution
  • Non-linear matter power spectrum.
  • Fitting functions not accurate
  • Need MC N-body sims
  • Baryons?
  • Non-Gaussian corrections to the shear field.
  • Covariance of power (4pt-fn)
  • Higher-order correlations
  • Non-Gaussian likelihoods

log Clgg
log l
P(k)
k
43
Data Analysis Challenges
  • Tera/Pico-Bytes of data to push through pipeline.
  • (eg. LSST raw1500GB Cats400GB)
  • 4 layers
  • Data acquisition, book keeping
  • Raw Data Reduction (registration)
  • Shape analysis (KSB, shapelets, K2K, automated)
  • Science analysis (map making, power spectra, etc)
  • How do we simulate large dynamic range?
  • And Monte-Carlo surveys 1000 times?
  • c.f. CMB temperature polarisation experiments
  • (see A. Challinors Talk).

44
Organizational Challenges
  • How to coordinate the effort?
  • EU Research-Training Network.
  • DUEL (Dark Universe with Extragalactic Lensing)
  • Exploit Cosmological Lensing from
  • CFHTLS, Pan-STARRS, VST-KIDS
  • Plan for future surveys (DUNE)
  • 8 Network Partners
  • Edinburgh, Paris, Bonn, Heidelberg, Munich,
    Leiden, Naples, British Columbia
  • 7 Postdocs 7 PhD students across network.
  • Training exchange of methods data.

45
Conclusions
  • Map dark matter in 3-D over all sky to z1.
  • Expect DE FoM to double every 2.5 years.
  • Dark Energy probes saturate beyond z1.
  • Bias in nuisance parameters biases w.
  • Self-calibration leads to doubling of errors.
  • Can add extra priors, or combine WL methods.
  • Optical/IR, Photo-z/Spec-z, Ground-Space
    synergies
  • Major challenges in data analysis lie ahead!
Write a Comment
User Comments (0)
About PowerShow.com