Title: Recognising Panoramas
1Recognising Panoramas
- M. Brown and D. Lowe,
- University of British Columbia
2Introduction
- Are you getting the whole picture?
- Compact Camera FOV 50 x 35
3Introduction
- Are you getting the whole picture?
- Compact Camera FOV 50 x 35
- Human FOV 200 x 135
4Introduction
- Are you getting the whole picture?
- Compact Camera FOV 50 x 35
- Human FOV 200 x 135
- Panoramic Mosaic 360 x 180
5Why Recognising Panoramas?
6Why Recognising Panoramas?
- 1D Rotations (q)
- Ordering ? matching images
7Why Recognising Panoramas?
- 1D Rotations (q)
- Ordering ? matching images
8Why Recognising Panoramas?
- 1D Rotations (q)
- Ordering ? matching images
9Why Recognising Panoramas?
- 1D Rotations (q)
- Ordering ? matching images
10Why Recognising Panoramas?
- 1D Rotations (q)
- Ordering ? matching images
11Why Recognising Panoramas?
- 1D Rotations (q)
- Ordering ? matching images
12Why Recognising Panoramas?
13Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
14Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
15Overview
- Feature Matching
- SIFT Features
- Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
16Overview
- Feature Matching
- SIFT Features
- Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
17Invariant Features
- Schmid Mohr 1997, Lowe 1999, Baumberg 2000,
Tuytelaars Van Gool 2000, Mikolajczyk Schmid
2001, Brown Lowe 2002, Matas et. al. 2002,
Schaffalitzky Zisserman 2002
18SIFT Features
- Invariant Features
- Establish invariant frame
- Maxima/minima of scale-space DOG ? x, y, s
- Maximum of distribution of local gradients ? q
- Form descriptor vector
- Histogram of smoothed local gradients
- 128 dimensions
- SIFT features are
- Geometrically invariant to similarity transforms,
- some robustness to affine change
- Photometrically invariant to affine changes in
intensity
19Overview
- Feature Matching
- SIFT Features
- Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
20Nearest Neighbour Matching
- Find k-NN for each feature
- k ? number of overlapping images (we use k 4)
- Use k-d tree
- k-d tree recursively bi-partitions data at mean
in the dimension of maximum variance - Approximate nearest neighbours found in O(nlogn)
21Overview
- Feature Matching
- SIFT Features
- Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
22Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
23Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
24Overview
- Feature Matching
- Image Matching
- RANSAC for Homography
- Probabilistic model for verification
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
25Overview
- Feature Matching
- Image Matching
- RANSAC for Homography
- Probabilistic model for verification
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
26RANSAC for Homography
27RANSAC for Homography
28RANSAC for Homography
29Overview
- Feature Matching
- Image Matching
- RANSAC for Homography
- Probabilistic model for verification
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
30Probabilistic model for verification
31Probabilistic model for verification
- Compare probability that this set of RANSAC
inliers/outliers was generated by a correct/false
image match - ni inliers, nf features
- p1 p(inlier match), p0 p(inlier match)
- pmin acceptance probability
- Choosing values for p1, p0 and pmin
32Finding the panoramas
33Finding the panoramas
34Finding the panoramas
35Finding the panoramas
36Overview
- Feature Matching
- Image Matching
- RANSAC for Homography
- Probabilistic model for verification
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
37Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
38Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
39Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Error function
- Multi-band Blending
- Results
- Conclusions
40Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Error function
- Multi-band Blending
- Results
- Conclusions
41Error function
- Sum of squared projection errors
- n images
- I(i) set of image matches to image i
- F(i, j) set of feature matches between images
i,j - rijk residual of kth feature match between
images i,j - Robust error function
42Homography for Rotation
- Parameterise each camera by rotation and focal
length - This gives pairwise homographies
43Bundle Adjustment
- New images initialised with rotation, focal
length of best matching image
44Bundle Adjustment
- New images initialised with rotation, focal
length of best matching image
45Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Error function
- Multi-band Blending
- Results
- Conclusions
46Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
47Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
48Multi-band Blending
- Burt Adelson 1983
- Blend frequency bands over range ? l
492-band Blending
Low frequency (l gt 2 pixels)
High frequency (l lt 2 pixels)
50Linear Blending
512-band Blending
52(No Transcript)
53(No Transcript)
54Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
55Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
56Results
57Results
58Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
59Overview
- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
60Conclusions
- Fully automatic panoramas
- A recognition problem
- Invariant feature based method
- SIFT features, RANSAC, Bundle Adjustment,
Multi-band Blending - O(nlogn)
- Future Work
- Advanced camera modelling
- radial distortion, camera motion, scene motion,
vignetting, exposure, high dynamic range, flash
- Full 3D case recognising 3D objects/scenes in
unordered datasets
http//www.cs.ubc.ca/mbrown/panorama/panorama.htm
l
61Questions?
http//www.cs.ubc.ca/mbrown/panorama/panorama.htm
l
62Analytical computation of derivatives
63Levenberg-Marquardt