Recognising Panoramas - PowerPoint PPT Presentation

1 / 63
About This Presentation
Title:

Recognising Panoramas

Description:

Are you getting the whole picture? Compact Camera FOV = 50 x 35 ... Panoramic Mosaic = 360 x 180 Why 'Recognising Panoramas'? Why 'Recognising Panoramas' ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 64
Provided by: matthe224
Category:

less

Transcript and Presenter's Notes

Title: Recognising Panoramas


1
Recognising Panoramas
  • M. Brown and D. Lowe,
  • University of British Columbia

2
Introduction
  • Are you getting the whole picture?
  • Compact Camera FOV 50 x 35

3
Introduction
  • Are you getting the whole picture?
  • Compact Camera FOV 50 x 35
  • Human FOV 200 x 135

4
Introduction
  • Are you getting the whole picture?
  • Compact Camera FOV 50 x 35
  • Human FOV 200 x 135
  • Panoramic Mosaic 360 x 180

5
Why Recognising Panoramas?
6
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

7
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

8
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

9
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

10
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

11
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

12
Why Recognising Panoramas?
13
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

14
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

15
Overview
  • Feature Matching
  • SIFT Features
  • Nearest Neighbour Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

16
Overview
  • Feature Matching
  • SIFT Features
  • Nearest Neighbour Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

17
Invariant Features
  • Schmid Mohr 1997, Lowe 1999, Baumberg 2000,
    Tuytelaars Van Gool 2000, Mikolajczyk Schmid
    2001, Brown Lowe 2002, Matas et. al. 2002,
    Schaffalitzky Zisserman 2002

18
SIFT Features
  • Invariant Features
  • Establish invariant frame
  • Maxima/minima of scale-space DOG ? x, y, s
  • Maximum of distribution of local gradients ? q
  • Form descriptor vector
  • Histogram of smoothed local gradients
  • 128 dimensions
  • SIFT features are
  • Geometrically invariant to similarity transforms,
  • some robustness to affine change
  • Photometrically invariant to affine changes in
    intensity

19
Overview
  • Feature Matching
  • SIFT Features
  • Nearest Neighbour Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

20
Nearest Neighbour Matching
  • Find k-NN for each feature
  • k ? number of overlapping images (we use k 4)
  • Use k-d tree
  • k-d tree recursively bi-partitions data at mean
    in the dimension of maximum variance
  • Approximate nearest neighbours found in O(nlogn)

21
Overview
  • Feature Matching
  • SIFT Features
  • Nearest Neighbour Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

22
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

23
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

24
Overview
  • Feature Matching
  • Image Matching
  • RANSAC for Homography
  • Probabilistic model for verification
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

25
Overview
  • Feature Matching
  • Image Matching
  • RANSAC for Homography
  • Probabilistic model for verification
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

26
RANSAC for Homography
27
RANSAC for Homography
28
RANSAC for Homography
29
Overview
  • Feature Matching
  • Image Matching
  • RANSAC for Homography
  • Probabilistic model for verification
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

30
Probabilistic model for verification
31
Probabilistic model for verification
  • Compare probability that this set of RANSAC
    inliers/outliers was generated by a correct/false
    image match
  • ni inliers, nf features
  • p1 p(inlier match), p0 p(inlier match)
  • pmin acceptance probability
  • Choosing values for p1, p0 and pmin

32
Finding the panoramas
33
Finding the panoramas
34
Finding the panoramas
35
Finding the panoramas
36
Overview
  • Feature Matching
  • Image Matching
  • RANSAC for Homography
  • Probabilistic model for verification
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

37
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

38
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

39
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Error function
  • Multi-band Blending
  • Results
  • Conclusions

40
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Error function
  • Multi-band Blending
  • Results
  • Conclusions

41
Error function
  • Sum of squared projection errors
  • n images
  • I(i) set of image matches to image i
  • F(i, j) set of feature matches between images
    i,j
  • rijk residual of kth feature match between
    images i,j
  • Robust error function

42
Homography for Rotation
  • Parameterise each camera by rotation and focal
    length
  • This gives pairwise homographies

43
Bundle Adjustment
  • New images initialised with rotation, focal
    length of best matching image

44
Bundle Adjustment
  • New images initialised with rotation, focal
    length of best matching image

45
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Error function
  • Multi-band Blending
  • Results
  • Conclusions

46
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

47
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

48
Multi-band Blending
  • Burt Adelson 1983
  • Blend frequency bands over range ? l

49
2-band Blending
Low frequency (l gt 2 pixels)
High frequency (l lt 2 pixels)
50
Linear Blending
51
2-band Blending
52
(No Transcript)
53
(No Transcript)
54
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

55
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

56
Results
57
Results
58
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

59
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

60
Conclusions
  • Fully automatic panoramas
  • A recognition problem
  • Invariant feature based method
  • SIFT features, RANSAC, Bundle Adjustment,
    Multi-band Blending
  • O(nlogn)
  • Future Work
  • Advanced camera modelling
  • radial distortion, camera motion, scene motion,
    vignetting, exposure, high dynamic range, flash
  • Full 3D case recognising 3D objects/scenes in
    unordered datasets

http//www.cs.ubc.ca/mbrown/panorama/panorama.htm
l
61
Questions?
http//www.cs.ubc.ca/mbrown/panorama/panorama.htm
l
62
Analytical computation of derivatives
63
Levenberg-Marquardt
  • Iteration step of form
Write a Comment
User Comments (0)
About PowerShow.com