CS 44957495 Computer Vision - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

CS 44957495 Computer Vision

Description:

Why 'Recognising Panoramas'? 1D Rotations (q) Ordering matching images ... Finding the panoramas. Bundle Adjustment. Multi-band Blending. Results. Conclusions ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 40
Provided by: FrankDe62
Category:

less

Transcript and Presenter's Notes

Title: CS 44957495 Computer Vision


1
CS 4495/7495Computer Vision
  • Image Stitching
  • Jim Rehg
  • Slides from Frank Dellaert, based almost entirely
    on a presentation by Matthew Brown and David Lowe
    at ICCV 2003

2
Introduction
  • Are you getting the whole picture?
  • Compact Camera FOV 50 x 35

3
Introduction
  • Are you getting the whole picture?
  • Compact Camera FOV 50 x 35
  • Human FOV 200 x 135

4
Introduction
  • Are you getting the whole picture?
  • Compact Camera FOV 50 x 35
  • Human FOV 200 x 135
  • Panoramic Mosaic 360 x 180

5
Human FOV
www.inition.co.uk/ inition/guide_hmds_vrar.htm
6
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

7
Why Recognising Panoramas?
  • 1D Rotations (q)
  • Ordering ? matching images

8
Why Recognising Panoramas?
9
Why Recognising Panoramas?
10
Why Recognising Panoramas?
11
Overview
  • Feature Matching
  • SIFT Features
  • Nearest Neighbour Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

12
Invariant Features
  • Schmid Mohr 1997, Lowe 1999, Baumberg 2000,
    Tuytelaars Van Gool 2000, Mikolajczyk Schmid
    2001, Brown Lowe 2002, Matas et. al. 2002,
    Schaffalitzky Zisserman 2002

13
SIFT Features
  • Invariant Features
  • Establish invariant frame
  • Maxima/minima of scale-space DOG ? x, y, s
  • Maximum of distribution of local gradients ? q
  • Form descriptor vector
  • Histogram of smoothed local gradients
  • 128 dimensions
  • SIFT features are
  • Geometrically invariant to similarity transforms,
  • some robustness to affine change
  • Photometrically invariant to affine changes in
    intensity

14
Overview
  • Feature Matching
  • SIFT Features
  • Nearest Neighbour Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

15
Nearest Neighbour Matching
  • Find k-NN for each feature
  • k ? number of overlapping images (we use k 4)
  • Use k-d tree
  • k-d tree recursively bi-partitions data at mean
    in the dimension of maximum variance
  • Approximate nearest neighbours found in O(nlogn)

16
Overview
  • Feature Matching
  • Image Matching
  • RANSAC for Homography
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

17
RANSAC for Homography
18
RANSAC for Homography
19
RANSAC for Homography
20
Overview
  • Feature Matching
  • Image Matching
  • RANSAC for Homography
  • Finding the panoramas
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

21
Finding the panoramas
22
Finding the panoramas
23
Finding the panoramas
24
Finding the panoramas
25
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Error function
  • Multi-band Blending
  • Results
  • Conclusions

26
Error function
  • Sum of squared projection errors
  • n images
  • I(i) set of image matches to image i
  • F(i, j) set of feature matches between images
    i,j
  • rijk residual of kth feature match between
    images i,j
  • Robust error function

27
Homography for Rotation
  • Parameterise each camera by rotation and focal
    length
  • This gives pairwise homographies

28
Bundle Adjustment
  • New images initialised with rotation, focal
    length of best matching image

29
Bundle Adjustment
  • New images initialised with rotation, focal
    length of best matching image

30
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Warping
  • Results
  • Conclusions

31
Warping
  • Take Notes
  • Key
  • iterate in target image
  • calculate corresponding source pixel
  • resample
  • nearest neighbor (bad)
  • bilinear (better)
  • bicubic (best)

32
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

33
Multi-band Blending
  • Burt Adelson 1983
  • Blend frequency bands over range ? l

34
2-band Blending
Low frequency (l gt 2 pixels)
High frequency (l lt 2 pixels)
35
Linear Blending
36
2-band Blending
37
Overview
  • Feature Matching
  • Image Matching
  • Bundle Adjustment
  • Multi-band Blending
  • Results
  • Conclusions

38
Results
39
Results
http//www.cs.ubc.ca/mbrown/panorama/panorama.ht
ml Autopano based on UBCs code live demo
Write a Comment
User Comments (0)
About PowerShow.com