Ersan stndag - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Ersan stndag

Description:

... for strain anisotropy (rsca); most promising. Strain Anisotropy Analysis ... How to account for strain anisotropy (hkl-dependent) due to elastic constants ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 26
Provided by: ersanus
Category:

less

Transcript and Presenter's Notes

Title: Ersan stndag


1
DANSEEngineering Diffraction
  • Ersan Ãœstündag
  • Iowa State University

2
Engineering Diffraction Scope
  • Main objective Predict lifetime and performance
  • Needed
  • Accurate in-situ constitutive laws ? f(?)
  • Measurement of service conditions residual and
    internal stress

3
Engineering Diffraction Typical Experiment
Eng. Diffractometers SMARTS (LANSCE) ENGIN X
(ISIS) VULCAN (SNS)
  • Typical engineering studies
  • Deformation studies
  • Residual stress mapping
  • Texture analysis
  • Phase transformations
  • Challenges
  • Small strains (0.1)
  • Quick and accurate setup
  • Efficient experiment design and execution
  • Realistic pattern simulation
  • Real time data analysis
  • Realistic error propagation
  • Comparison to mechanics models
  • Microstructure simulation

Braggs law ? 2dsin?
4
Engineering Diffraction Vision for DANSE
  • Objectives
  • Enable new science ( enhance the value of EngND
    output)
  • Utilize beam time more efficiently
  • Help enlarge user community
  • Approach
  • Experiment planning and setup (Task 7.1)
  • Experiment design
  • Optimum sample handling (SScanSS)
  • Error analysis
  • Mechanics modeling (FEA, SCM) (Task 7.2)
  • Multiscale (continuum to mesoscale)
  • Constitutive laws ? f(?)
  • Experiment simulation (Task 7.3)
  • Instrument simulation (pyre-mcstas)
  • Microstructure simulation (forward / inverse
    analysis)
  • Impact
  • Re-definition of diffraction stress analysis

5
Use Case Engineering Diffraction
ltincludegt
Reduce
NeXus file
User
ltincludegt
ABAQUS
?(?)
ltincludegt
I(TOF)
pyre-mcstas
6
Activity Diagram FEA (Finite Element Analysis)
SNS
Laptop
Linux cluster
?(P)
NeXus
Archive
E1, Y1, E2, Y2
Rietveld
ABAQUS
a1(P), a2(P)
?1c, ?2c
?1(a1), ?2(a2)
Compare (fmin) Optimize (E1,Y1)
?1(?1), ?2(?2)
7
Example BMG-W fiber composite
  • Residual stresses
  • Compression loading at SMARTS
  • Experiments on 20 to 80 volume fraction of W
  • Unit cell finite element model
  • GSAS output for average elastic strain in W in
    the longitudinal direction

20 W/BMG
80 W/BMG
Reference B. Clausen et al., Scripta Mater. 49
(2003) p. 123
8
Activity Diagram FEA (Finite Element Analysis)
?(P)
ltincludegt
E1, Y1, E2, Y2
ltincludegt
ABAQUS
experimental data
?1c, ?2c
?1(a1), ?2(a2)
Compare Optimize
ltincludegt
ltincludegt
leastsq
fmin
?1(?1), ?2(?2)
Easy utilization of various software components
9
Constitutive Laws for W
Voce
Power-law
s1
10
Constitutive Laws for W
  • Voce plasticity more suitable
  • Unrealistic power-law coefficient (47)
  • Unequal weighting of data

11
Optimization Results FEA
  • Also studied
  • Stability of algorithms
  • Effects of initial values -gt neural network
    algorithms

12
Optimization Results FEA
13
Use Case Engineering Diffraction
ltincludegt
Reduce
NeXus file
User
ltincludegt
EPSC
?(?)
ltincludegt
I(TOF)
pyre-mcstas
  • Self-consistent modeling (SCM)
  • Estimate of lattice strain (hkl dependent)
  • Study of deformation mechanisms

14
SCM Code Flow
Post Process
Main Process
Pre Process
Set parameters
EPSC Run
Input Files
Output Files
Set data
Plot
appEpsc.py
collectData.py
setParameters.py
inputGenerate.py
plotEngine.py
runEpsc.py
parameters.py
materialsInput.py
readExpOutput.py
readModelOutput.py
textureInput.py
getDataModule.py
diffractionInput.py
interpolateFunction.py
processInput.py
15
Optimizer
PlotController
interrupt()
plot()
Optimization Process
OptController
select() boolean set() float
Data
DataControl
ParameterControl
s, e total s, e hkl
select() boolean weigh() array
select() boolean set() float
collect() array
Pre Process
Post Process
ExpData
EpscOutput
EpscInput
smooth() float
interpolate() float
collect() file
EpscBlackBox
- P Parameters
Main Process
- main() epsc1 11.out
16
Mechanical Loading of BaTiO3
  • Time-of-flight neutron diffraction data from ISIS
  • Complete diffraction patterns in one setting
  • Simultaneous measurement of two strain directions
  • Different data analysis approaches
  • Single peak fitting natural candidate but some
    peaks vanish as the corresponding domain is
    depleted
  • Rietveld crystallographic model fit to all
    peaks but results are ambiguous
  • Constrained Rietveld multi-peak fitting, but
    accounting for strain anisotropy (rsca) most
    promising

M. Motahari et al. 2006
17
Strain Anisotropy Analysis
  • Desirable to perform multi-peak fitting (e.g. via
    Rietveld analysis) to improve counting
    statistics.
  • Question How to account for strain anisotropy
    (hkl-dependent) due to elastic constants and
    inelastic deformation (e.g., domain switching)?
  • Current approach for cubic crystals (in GSAS)
  • ? is called rsca and is a refined parameter for
    some peak profiles.
  • Works reasonably well in the elastic regime, but
    not beyond.
  • Need to develop a rigorous approach to allow
    multi-peak fitting with peak weighting and peak
    shift dictated by mechanics modeling.

18
Neural Network Analysis
Schematic Representation
Output Vector
Target Vector
Input Vector
H. Ceylan et al.
19
Constitutive Laws for W and BMG
Voce
Power-law
s1
W
BMG
Input parameters (s0)BMG, nBMG, (s0)W, (s1)W,
(?0)W, (?1)W and ?T
20
Neural Network Analysis
Approach
  • 1200 runs of ABAQUS with random input parameters
  • Training of ANN algorithms with 1100 datasets
  • Use of 100 datasets as test case
  • Use of experimental data for inverse analysis
  • Prediction of optimum values of input parameters
  • Successful training of ANN
  • Strong influence for this parameter

L. Li et al.
21
Neural Network Analysis
Sensitivity Studies
  • Strong influence by parameters (s0)BMG, (s0)W,
    (s1)W and (?0)W
  • Weak/no influence by parameters nBMG, (?1)W and
    ?T

L. Li et al.
22
Neural Network Analysis
Result
  • Use of experimental data for inverse analysis
  • Prediction of optimum values of all 7 input
    parameters
  • Previous analyses optimized only 3 parameters

L. Li et al.
23
Engineering Diffraction Microstructure
  • Si single crystals (0.7 and 20 mm thick)
  • SMARTS data
  • Double peaks due to dynamical diffraction

24
Engineering Diffraction Microstructure
  • Si single crystal (20 mm thick)
  • ENGIN-X depth scan
  • Data originates from surface layers

Critical question Transition between a single
crystal and polycrystal?
E. Ustundag et al., Appl. Phys. Lett. (2006), in
print
25
Engineering Diffraction Team
  • E. Ãœstündag, S. Y. Lee, S. M. Motahari (ISU)
  • X. L. Wang (SNS) - VULCAN
  • C. Noyan, L. Li (Columbia) microstructure
  • M. Daymond (Queens U., ISIS) ENGIN X, SCM
  • L. Edwards and J. James (Open U., U.K.) -
    SScanSS
  • C. Aydiner, B. Clausen, D. Brown, M. Bourke
    (LANSCE) - SMARTS
  • J. Richardson (IPNS)
  • P. Dawson (Cornell) 3-D FEA
  • H. Ceylan (ISU) - optimization

Member of EngND Executive Committee
Write a Comment
User Comments (0)
About PowerShow.com