Title: MOSFETs Flicker Noise Modeling For Circuit Simulation
1MOSFETs Flicker Noise Modeling For Circuit
Simulation
A. Laigle, F. Martinez , A. Hoffmann and M.
Valenza
valenza_at_cem2.univ-montp2.fr
Montpellier University
2Outline
- Introduction
- Methodology and Instrumentation
- 1/f modeling
- 1/f theory
- 1/f models
- Experimental results
- Conclusion
3 Introduction (1)
- Low frequency noise is important for
- Conduction phenomena and random noise
- - White noise (thermal shot noise)
- - 1/f and origin (?N, ? µ, ? N- ? µ) RTS
G.R. - - High electric field multiplication
- - Correlation between two noise sources
- Technologies evaluation
- - Reliability, quality, aging
- - Parasitic elements, defects
- - Equivalent circuit
- Analog applications with mixed CMOS technologies
(LN amplifiers, oscillators, sensors ) - We need models
4Introduction (2)
5DRAIN CURRENT NOISE (3)
- Fundamental
- thermal noise
- Excess noise
- RTS
- 1/f
6GATE CURRENT NOISE (4)
- Fundamental level
- Shot noise
- Excess noise
- RTS
- 1/f
7Introduction (5)
- Drain current spectral density is dependent of
- Technology process
- Oxide thickness
- Mobility
- Channel geometry (W, L)
- Access resistances
- Biases
Are commercial simulators well suited ?
- Gate current spectral density few
investigations up today
8Outline
- Introduction
- Methodology and Instrumentation
- 1/f modeling
- 1/f theory
- 1/f models
- Experimental results
- Conclusion
9USED METHODOLOGY
Good model for F.E.T devices. ic source-drain
noise generator ? transistor channel ig
gate-source noise generator ? command electrode
/channel
Direct measurement of
Coherence
10Simultaneous measurements
11EXPERIMENTAL SETUP
12Transimpedance Amplifier
13Voltage Amplifier
14Cross Spectrum Measurements
eA
eA
15Low noise Amplifiers
Voltage Amplifier
Transimpedance Amplifier
Bandwidth 0.5Hz-1MHz/200Hz-30MHz
1 Hz- 200 KHz
Gain 1000
108 107 106 ?
Input Imped. 1 M? - 15 pF/ 1 M? - 50 pF
1 ? - 10 k?
Noise equival. 40 ? / 35 ?
500 pA 50 nA 2 ?A
Direct measure of SI(f) Under low impedance
Direct measure of SI(f) Under strong impedance
Used for
16Drain noise measurements
eA(t)
iRp(t)
Ch(t)
17Drain noise measurements
VS(t)
RC
iA(t)
ich(t)
18Outline
- Introduction
- Methodology and Instrumentation
- 1/f modeling
- 1/f theory
- 1/f models
- Experimental results
- Conclusion
191/f noise theory
- Noise source due to conductivity fluctuations ?
q µ n - three models
- Hooge model (?µ)
- SPICE
- Mc Whorter model (?N)
-
- correlated model (?N- ?µ) BSIM
20?N model
Weak inversion
Strong inversion i) linear regime
ii) saturation regime
21Typical NMOS results
22?µ model
Weak inversion
Strong inversion i) linear regime
ii) saturation regime
23Typical PMOS results
24CORRELATED MODEL (?N- ?µ)
Fluctuation of oxide Trapped carriers quantity
Fluctuation of carriers number and of their
mobility
- ? Coulomb scattering coefficient
- ? the electron tunneling constant in the oxide
- NT oxide trap density
25CONTRIBUTION OF ACCESS RESISTANCES
26CONTRIBUTION OF ACCESS RESISTANCES
27Access resistance noise
28SPICE Simulations
SPICE 1980
NLEV0
SPICE 1996
NLEV1
HSPICE
NLEV2 and 3
29BSIM MODEL
Weak inversion
Strong inversion
and
with
Continuity between weak and strong inversion
30BSIM MODEL
31Outline
- Introduction
- Methodology and Instrumentation
- 1/f modeling
- 1/f theory
- 1/f models
- Experimental results
- Conclusion
32Typical Results
33 PMOS Results TOX1.5 nm
34NMOS Results TOX1.5 nm
35PMOS TOX 1.3 nm W10µm, L0.35µm
Ohmic Range
NOIA 2,2.1020 (V-1.m-3) NOIB 8,7.106
(V-1.m-1) NOIC 8,6.10-8 (V-1.m)
36PMOS TOX 1.3 nm W10µm, L0.35µm
Ohmic Range
VT
NOIA 2,2.1020 (V-1.m-3) NOIB 8,7.106
(V-1.m-1) NOIC 0 (V-1.m)
37PMOS TOX 1.3 nm W10µm, L0.35µm
Saturation Range
VT
NOIA 2,2.1020 (V-1.m-3) NOIB 8,7.106
(V-1.m-1) NOIC 8,6.10-8 (V-1.m)
38Saturation Range
PMOS TOX 1.3 nm W10µm, L0.35µm
VT
NOIA 2,2.1020 (V-1.m-3) NOIB 8,7.106
(V-1.m-1) NOIC 0 (V-1.m)
39PMOS TOX 1.5 nm W0.3µm, L10µm
Ohmic Range
VG1V
VT
NOIA 1.1022 (V-1.m-3) NOIB 2,6.106
(V-1.m-1) NOIC 7.10-11 (V-1.m)
40PMOS TOX 1.5 nm W0.3µm, L10µm
Ohmic Range
NOIA 1.1022 (V-1.m-3) NOIB 2,6.106
(V-1.m-1) NOIC 0 (V-1.m)
41PMOS TOX 1.5 nm W0.3µm, L10µm
Saturation Range
NOIA 1.1022 (V-1.m-3) NOIB 2,6.106
(V-1.m-1) NOIC 7.10-11 (V-1.m)
42PMOS TOX 1.5 nm W0.3µm, L10µm
Saturation Range
VT
NOIA 1.1022 (V-1.m-3) NOIB 2,6.106
(V-1.m-1) NOIC 0 (V-1.m)
43PMOS TOX 1.5 nm
VDS -25 mV
44Gate current noise (PMOS TOX 1.5 nm)
VDS -25 mV
45Coherence measurements(PMOS TOX 1.5 nm)
VDS -25 mV
46Conclusion
SPICE and HSPICE models are not well suited for
1/f noise
BSIM3 is a good fitting model
Thinner and thinner gate oxide ? new noise sources
47Conclusion