Title: Soluciones bsicas
1Soluciones básicas
Apuntes preparados por Jesus Carrera con material
de Meier y Poetter
2Ensayo hidráulico
3Interpretación en régimen cuasiestacionario
4Interpretación en régimen cuasiestacionario
5Interpretación con gráfico semilogarítmico
6Acuífero libre con recarga
Derivar la ecuación de nivel en función de Q, K y
w
Despejando K
7Ejercicios
1a Estimate the radius the drawdown cone if the
rate of recharge is 12 inches per year and steady
state conditions have been reached for a well has
been pumped for six months at a rate of 4 gallons
per minute.
1b An unconfined alluvial aquifer with a
hydraulic conductivity of 0.001 cm/s is 20 feet
thick and is pumped at a rate of 9 gallons per
minute. After steady state conditions are
reached, a head of 15 feet above the aquifer base
is measured in an observation well 10 feet from
the pumping well. If the recharge rate due to
precipitation is 12 inches per year, what is the
steady state head in an observation well 20 feet
from the pumping well?
8Ensayos en régimen transitorio
- Beneficios/Desventajas
- Se puede estimar almacenamiento
- Estimación para tiempos cortos
- Fácil de detectar efectos raros
- Análisis mas complejo
9What is drawdown?
h(t) actual heads
hN (t) heads one would observe without pumping
h(t0)
hN(t)
h(t)
t0 Start pumping
10(No Transcript)
11Aproximación de Jacob
12Theis Solution
- Usual assumptions
- Radial Flow
- Infinite aquifer
- Initially constant head
- Horizontal aquifer
- Confined aquifer
- Well of zero radius
- Zero recharge
- Homogeneous T
13Theis Solution
- Discuss after checking concept of drawdown
- NO! (only the added effect of pumping needs to be
radial - Yes, but we will see later
- NO!, s(x,y,t) hN(x,y,t) h (x,y,t)
- NO!
- NO!. Only constant T and S
- Yes, but only relevant for early time
- NO!, only needs constant (in time) recharge (OK
spatial variation) - Yes, , but still OK for late time
- Usual assumptions
- Radial Flow
- Infinite aquifer
- Initially constant head
- Horizontal aquifer
- Confined aquifer
- Well of zero radius
- Zero recharge
- Homogeneous T
14Solución de Theis
15Función de pozo de Theis
16at the red observation well ..
17(No Transcript)
18(No Transcript)
19An example Pumping well discharges _at_ 500 GPM
from a 100ft thick aquifer Observation well
is 200 ft away Plot as s vs r2/t on same scale
of log paper as W(u) vs u
20Example
W(u)2.15
s1.2ft
r2/t1.95x107ft2/day
u7x10-2
Ejercicio Calcular T, S
21Same example choosing other points
W(u)2.15
s1.2ft
s0.56ft
W(u)1.0
u0.1
r2/t2.8x107ft2/day
r2/t1.95x107ft2/day
u7x10-2
Alternativamente, dibujar s vs. t ajustar con
W(u) vs. 1/u
22For the same example Plot s vs t
to 2.6 x 10-4 day
Dh 1.3 ft
Alternatively Plot S vs log r (for one point in
time) and use Dh drawdown over 1 log cycle r
intercept for zero drawdown to time of plot
23Kruseman y de Ridder example