3D reconstruction from uncalibrated images - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

3D reconstruction from uncalibrated images

Description:

Conditions for 3D reconstruction. Camera parameter and motion (Using Self-calibration) ... Self-calibration result using rig correspondence only ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 18
Provided by: cvSn
Category:

less

Transcript and Presenter's Notes

Title: 3D reconstruction from uncalibrated images


1
3D reconstruction from uncalibrated images
  • Young Ki Baik
  • CV Lab

2
Contents
  • Introduce
  • Basic geometrical theory
  • Overview 3D reconstruction
  • Conditions for 3D reconstruction and Solution
  • Correspondence
  • Camera parameters and motion
  • Results
  • Experimental results and demonstration
  • Future Works

3
Introduction(1)
  • Mapping to images

3D point
3D object
mapping
Image plane
Camera
Camera
Camera system for obtaining images
4
Introduction(2)
  • 3D reconstruction from images
  • Point correspondence
  • Camera parameter and motion

3D point
3D object
Camera
Camera
3D reconstruction system to make 3D object
5
3D reconstruction from uncalibrated images
  • Overview

Image Sequence
Feature Extraction/ Matching
Relating Image
Projective Reconstruction
Auto-Calibration
Dense Matching
3D Model Building
6
Conditions for 3D reconstruction
  • Correspondence
  • Feature extraction
  • Harris corner method
  • SIFT method
  • Scale Invariant Feature Transform
  • Initial feature matching
  • Template matching (Image base descriptor)
  • Descriptor (SIFT-d, PCA-d, SIFT-dPCA-d, )
  • Feature matching
  • RANdom SAmple Consensus
  • To eliminate outlier

7
Conditions for 3D reconstruction
  • Correspondence
  • Guide matching
  • To get more correspondence
  • Using previous features and Geometry information

About 2 times more correspondence
Geometry based distance value using fundamental
matrix
Correlation based cost value
8
Conditions for 3D reconstruction
  • Camera parameter and motion (Using
    Self-calibration)
  • Dual Absolute Conic
  • Hartley 94 / Hartley 99, David Nistér IJCV 2004
    ( cheirality solution )
  • Dual Absolute Quadric
  • Triggs97
  • M.Pollefeys et al. PAMI98, ECCV 2002, IJCV 2004

Dual Absolute Quadric
M. Pollefeys
9
Conditions for 3D reconstruction
  • Constraints for self-calibration
  • Constant internal parameter
  • Fixed camera
  • K1 K2
  • Known internal parameter
  • Rectangular pixel s 0
  • Square pixel s 0, fx fy
  • Principle point known ( ux , uy ) image center

10
Experiments and results
  • Result using rig
  • Rig
  • Calibration using vanishing point
  • DAQ (using weighted linear equation)

Using the calibration rig information
Using the manual vanishing points input
Self-calibration result using rig correspondence
only
Self-calibration result is similar to the method
using calibration rig.
11
Experiments and results
  • Real scene test
  • Assuming that self-calibration works well

12
Experiments and results
  • Manual input to check self-calibration results
  • Points Correspondence information
  • Line Connection information

13
Experiments and results
  • Test 1 (Pinball machine 3 images)
  • Key points
  • Match

Fig.1 Fig.2 Fig.3
5476 5609 8530
Fig.1-2 Fig.2-3 Fig.1-2-3
Initial match 146 196 41
RANSAC 104 124 41
Guide match 230 160 67
RANSAC 281 202 67
14
Experiments and results
  • Test 2 (Mask 3 images)
  • Key points
  • Match

Fig.1 Fig.2 Fig.3
1837 1420 1888
Fig.1-2 Fig.2-3 Fig.1-2-3
Initial match 102 158 4
RANSAC 35 100 4
Guide match 150 258 23
RANSAC 78 186 23
15
Experiments and results
  • Test 3 (Building 6 images)
  • Key points
  • Match

Fig.1 Fig.2 Fig.6
959 1064 1177
Fig.1-2 Fig.2-3 Fig.16
Initial match 386 377 30
RANSAC 227 254 30
Guide match 465 484 35
RANSAC 308 309 35
16
Experiments and results
  • Test 4 (House 5 images)
  • Key points
  • Match

Fig.1 Fig.2 Fig.5
3013 3084 2873
Fig.1-2 Fig.2-3 Fig.15
Initial match 1023 973 15
RANSAC 656 716 15
Guide match 1186 1216 54
RANSAC 911 909 54
17
Future works
  • Quasi-Dense matching technique and reconstruction
  • To get more reliable results
  • Full side 3D reconstruction
  • Using attaching algorithm
  • Bundle adjustment algorithm
  • To reduce error
  • Full 3D reconstruction system
  • Dense matching and 3D modeling
Write a Comment
User Comments (0)
About PowerShow.com