Title: Recognition and 3D Reconstruction from Video
1Recognition and 3D Reconstruction from Video
David Nistér
250 Thousand Images
3110,000,000Images in5.8 Seconds
4(No Transcript)
5(No Transcript)
6(No Transcript)
7Scalable Recognition with a Vocabulary Tree
David Nistér, Henrik Stewénius
8Towards Urban 3D Reconstruction From Video
A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B.
Clipp, C. Engels, D. Gallup, P. Merrell, M.
Phelps, S. Sinha, B. Talton, L. Wang, Q. Yáng, H.
Stewénius, R. Yang, G. Welch, H. Towles, D.
Nistér and M. Pollefeys
9(No Transcript)
10(No Transcript)
11MP
12Video collection
2x4 cameras 1024x768_at_30Hz
13(No Transcript)
14Video Data
15(No Transcript)
16(No Transcript)
17(No Transcript)
18Outline
- Feature Extraction and Description
- Matching, Tracking and Indexing
- Geometry
- Surface Reconstruction
19The transformation hierarchy
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
26 27Invariance or Covariance
- Detection and image transformation commutes
Detect (Transform(I))Transform(Detect(I))
28Rotation-Invariant Detection
29Feature Detection
Harris Corners
Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
30Feature Detection
Harris Corners
31Feature Detection
Harris Corners
32Feature Detection
Harris Corners
Second Moment Matrix
33Feature Detection
5x5 Max
Image
k
Saturation
Features
34Feature Detection
35RotationScale Invariant Detection
- DoG Points
- Lindeberg, Schmid Mohr, Lowe
36DoG Points
-
Video In
37Affine Invariant Regions
- Tuytelaars Van Gool
- Mikolajczyk and Schmid
- Matas et al.
38Harris and Hessian Affine
39MSER
- Matas et al.
- Similar to watershed, but thresholded at minimal
change rather than segmented when watersheds join
40MSER
- Extremal regions are continuous-invariant
- MSERs are affine invariant if growth is measured
in relative terms
41Demonstration of live feature tracking and MSERs
42Vertical Resampler
Gradient Orientation Histogram
SIFT Descriptor
Circular regions
Oriented Regions
Upright Elliptical Regions
Frame-to-Frame Tracking
Region Resampler
Elliptical Regions
Tracks of Affine Invariant Regions and
Corresponding Descriptors
MSER
Video In
43Selecting a coordinate system
44Region Description
- Image Patch
- Normalized Image Patch
- SIFT Descriptor
- DCT Descriptors
- Wavelets
45SIFT Descriptor
46Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
472D Tracking
KLT
Harris
HC
48Feature Matching/Tracking
Normalized Correlation
49Feature Matching/Tracking
Only retain bidirectional matches No loops
because of symmetry d(a,b)d(b,a)
50Feature Matching/Tracking
Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
51Feature Matching/Tracking
52Feature Matching/Tracking
53Feature Matching/Tracking
54Matching vs Tracking
- Detection, while a tremendous strength in terms
of scalability, is a weakness for repeatability
55KLT Tracker
Harris Tracker
56 GPU KLT
work of Sudipta Sinha
Image 1024 x 768 1000 features
ms
57GPU-KLT
58Indexing
- Fighting the curse of dimensionality
- Locality Sensitive Hashing (LSH)
- K-d tree
- Vocabulary Tree
Find nearest neighbor
59tf-idf
- Term Frequency Inverse Document Frequency
- Is a weighting of words in a document
(n/N) log (D/d)
60Clustering
- K-Means
- K-Medioids
- Mean-Shift
- Spectral Clustering
- Graph-Cuts
61K-means
62Mean-Shift
63Spectral-Clustering
Break into eigen-modes
64Graph-Cuts
65Machine Learning
- When parametric invariance is insufficient
- Supervised,Unsupervised,Semisupervised
- Support Vector Machines (SVMs)
- Boosting
- Neural Nets
66Scalability
If we can get repeatable, discriminative
features, then recognition can scale to very
large databases using the vocabulary tree and
indexing approach described in Nistér
Stewénius CVPR 2006.
67Vocabulary Tree
68Vocabulary Tree
69Vocabulary Tree
70(No Transcript)
71Adding, Querying and Removing Images at full speed
Query
Add
Remove
72Training and Addition are Separate
Common Approach
Our approach
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94(No Transcript)
95(No Transcript)
96Performance
97(No Transcript)
98Size Matters
99(No Transcript)
100(No Transcript)
101Geometric Verification
102Robust to Clutter and Occlusion
- Local Regions
- Like Web-search
103Geometry
- Demonstration of real-time camera tracking
104(No Transcript)
105Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
106Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
- 365 m without loss of tracking
- 350 m ( 3.5 minutes) without GPS
- Error in distance traveled 1
- Accumulated error in position 3-5
- e.g. 10m over 350m
North
East
107Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
108Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
1093D Tracker
110- Large scale model produced purely from video (no
GPS/INS)
111(No Transcript)
112(No Transcript)
113- Large scale model produced purely from video (no
GPS/INS)
114Geo Registered Cameras(With INS Data)
115GPS Data Gathering
- Garmin GPS16
- 200 unit
- 1Hz updates
- Records
- Latitude-Longitude
- Pseudo-range up to 12 satellites
- Satellites clock
1163D Tracking and Geo-registration
1173D Tracking and Geo-registration
118Lever arm calibration
refined lever arm
119Lever arm calibration
120(No Transcript)
121Geometry Tools
122Bundle Adjustment
123Trust Region Methods
x
124Trust Region Methods
x
dx
125Trust Region Methods
x
dx
126Trust Region Methods
x
dx
127Least squares with Gauss Newton Approximation
Results in cost function approximation
Identify Gradient
and Hessian Approximation
128Bundle Adjustment
Block LU factorization
Multiply by
Multiply by
First order sparsity
129Bundle Adjustment
Block LU factorization
Multiply by
Multiply by
130Bundle Adjustment
Range
Bundle Adjuster
Domain
131Reprojection constraint
World point
Image point
3DCamera
Radial Distortion
spaf
RC
RP
T
132Bundle Adjustment
133Bundle Adjustment
1343D Tracking
Bundled
SBET Only
135Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
136Estimate or posterior likelihood output
Hypothesis Generator
Probabilistic Formulation
Precise Formulation
Data Input
137RANSAC- Random Sample Consensus
138RANSAC- Random Sample Consensus
Line Hypotheses
Points
139RANSAC
?
Hypotheses
500
Observations
1000
500 x 1000 500.000
140Preemptive RANSAC
Depth-first Preemption
Hypotheses
500
Observations
1000
500 x ???? ???????
141Preemptive RANSAC
Breadth-first Preemption
Hypotheses
500
Chunksize
100
Observations
1000
500 x 200 100.000
Overhead 100 microseconds
142Preemptive RANSAC
Observed Tracks
143Preemptive RANSAC
144Preemptive RANSAC
145Relative Orientation
146Calibrated vs Uncalibrated
147Constraints
148Constraints
SingularValues
1492 Views
3 Views
6p Quan, 1994
8p von Sanden, 1908 Longuet-Higgins, 1981
4p Nister, Schaffalitzky, 2004
7p R. Sturm, 1869
5p Nister, 2003
6p Philip, 1996
5p Kruppa 1913 Nister 2003
150(No Transcript)
151The Epipoles and the Epipolar Line Homography
152The Epipolar Constraint
h
153The Kruppa Constraints
h
154The Five Point Problem
Given five point correspondences,
What is R,t ?
E. Kruppa, Zur Ermittlung eines Objektes aus zwei
Perspektiven mit Innerer Orientierung, 1913.
155O. Faugeras and S. Maybank, Motion from Point
Matches Multiplicity of Solutions, 1990.
J. Philip, A Non-Iterative Algorithm for
Determining all Essential Matrices Corresponding
to Five Point Pairs, 1996.
B. Triggs, Routines for Relative Pose of Two
Calibrated Cameras from 5 Points, 2000.
D. Nister, An Efficient Solution to the
Five-Point Relative Pose Problem, 2002.
156The solution is minimal in two respects
157Nr of Roots
Average 4.55
158Nr of Solutions
Average 2.74
15910 Solutions
0.067, 0.287 lt gt 0.329,1.297 0.254,
0.0646 lt gt 0.523,1.0807 0.239, -0.213 lt
gt 0.517,0.645 -0.710, -0.693 lt gt
-0.141,0.157 0.661, -0.307 lt gt 0.950,
0.773
160The 5-point algorithm (Nistér PAMI 04)
161The 5-point algorithm (Nistér CVPR 03)
E
R,t
162The 5-point algorithm (Nistér PAMI 04)
R,t
E
163The 5-point algorithm (Stewénius et al)
10 x 10 Action Matrix
Eigen-Decomposition
R,t
E
1645-Point Matlab Executable
Recent Developments on Direct Relative
Orientation, Henrik Stewenius, Christopher
Engels, David Nister, ISPRS Journal of
Photogrammetry and Remote Sensing
www.vis.uky.edu/dnister
165(No Transcript)
166Noise
Minimal Cases, Sideways Motion
Depth 0.5 Baseline 0.1 Field of View 45 degrees
167Direction
50 points
Depth 0.5 Baseline 0.1 Field of View 45 degrees
168Baseline
Minimal Cases, Sideways Motion
Depth 0.5 Baseline 0.1 Field of View 45 degrees
169Easy Conditions
Realistic Conditions
Correct Calibration
170Focal Length Miscalibration
0.7
0.5
0.3
0.05
3.0
2.0
1.5
1.3
171Planar Ambiguity, Uncalibrated
2Degrees of Freedom
172Planar Ambiguity, Calibrated
2-Fold or Unique
173Depth
174The 3 View 4 Point Problem
175(No Transcript)
176(No Transcript)
177How Hard is this Problem?
178Approximately This Hard
179(No Transcript)
180(No Transcript)
181(No Transcript)
182(No Transcript)
183(No Transcript)
184(No Transcript)
185(No Transcript)
186(No Transcript)
187Uncertainty in Epipolar Geometry
work with Chris Engels
Single Estimate often ill posed
Representation of posterior likelihood well
posed, but computationally challenging
188Uncertainty in Epipolar Geometry
work with Chris Engels
Single Estimate often ill posed
Representation of posterior likelihood well
posed, but computationally challenging
189Epipoloscope
work with Chris Engels
190Epipoloscope
work with Chris Engels
8 point
5 point
191Hypothesis Generators
- Partially data-driven methods
- Five-point epipole
- Three-point epipole (uses intrinsic
calibration) - Fully data-driven methods
- Eight-point
- Seven-point
- Five-point (uses intrinsic calibration)
192Results
- Likelihood image using different methods
Five-Point
Eight-Point
Seven-Point
Three-Point epipole
Five-Point epipole
193Results
- Convergence of the posterior
-
194Results
- Estimation of Confidence Interval
- Confidence estimated by probability mass
contained within certain interval -
True epipole
Confidence interval
195Results
- Comparison of Confidence Intervals
196Results
- Comparison of Confidence Intervals
- Fully Data-driven
Five-Point 0.935666
Eight-Point 0.277246
Seven-Point 0.395411
197Results
- Comparison of Confidence Intervals
- Partially Data-driven
Three-Point epipole 0.937596
Five-Point epipole 0.407995
198Results
- Baseline Selection
- Choose best pair of frames for pose, stereo, etc.
-
199Triangulation
200Triangulation
- 2 Stages Correction Ideal Triangulation
201Triangulation
- Rays Intersect lt-gt Rays Coplanar
202Triangulation
- One parameter family Balance the error
203Triangulation
- One parameter family Balance the error
x
x
e
e
204Triangulation
- One parameter family Balance the error
205Triangulation
- One parameter family Balance the error
- Max-Norm -gt Quartic (Closed form, Nistér)
- L2-Norm -gt Sextic (Hartley Sturm)
- Directional Error -gt Quadratic (Oliensis)
206Optimal 3 View Triangulation work with Henrik
Stewenius and Fred Schaffalitzky
47 Stationary Points
207Nr of Stationary Points for Triangulations in N
Views
208Sampson Approximation
Where
is the covariance matrix of detected image
features and
are the incidence function and its Jacobian
and
209Sampson Approximation
For two views this leads to
For three views, an approximation of the distance
to trifocal incidence can be found by tensor
contractions and Cramers rule in lt1 microsecond
Assuming Cauchy distribution
2102D-3D Pose
211The 3-Point Problem
212The 3-Point Problem
213(No Transcript)
214(No Transcript)
215(No Transcript)
216(No Transcript)
217(No Transcript)
218(No Transcript)
219(No Transcript)
220(No Transcript)
221(No Transcript)
222(No Transcript)
223(No Transcript)
224(No Transcript)
225(No Transcript)
226(No Transcript)
227(No Transcript)
228(No Transcript)
229(No Transcript)
230(No Transcript)
231(No Transcript)
232(No Transcript)
233(No Transcript)
234(No Transcript)
235(No Transcript)
236(No Transcript)
237(No Transcript)
238(No Transcript)
239(No Transcript)
240(No Transcript)
241(No Transcript)
242(No Transcript)
243(No Transcript)
244(No Transcript)
245(No Transcript)
246(No Transcript)
247(No Transcript)
248(No Transcript)
249(No Transcript)
250(No Transcript)
251(No Transcript)
252(No Transcript)
253(No Transcript)
254(No Transcript)
255(No Transcript)
256(No Transcript)
257(No Transcript)
258(No Transcript)
259(No Transcript)
260(No Transcript)
261(No Transcript)
262(No Transcript)
263(No Transcript)
264(No Transcript)
265(No Transcript)
266(No Transcript)
267(No Transcript)
268(No Transcript)
269(No Transcript)
270(No Transcript)
271(No Transcript)
272(No Transcript)
273(No Transcript)
274(No Transcript)
275(No Transcript)
276(No Transcript)
277(No Transcript)
278(No Transcript)
279(No Transcript)
280(No Transcript)
281(No Transcript)
282(No Transcript)
283(No Transcript)
284(No Transcript)
285(No Transcript)
286(No Transcript)
287(No Transcript)
288(No Transcript)
289(No Transcript)
290(No Transcript)
291(No Transcript)
292(No Transcript)
293(No Transcript)
294(No Transcript)
295(No Transcript)
296(No Transcript)
297(No Transcript)
298(No Transcript)
299(No Transcript)
300(No Transcript)
301(No Transcript)
302(No Transcript)
303(No Transcript)
304(No Transcript)
305(No Transcript)
306(No Transcript)
307(No Transcript)
308(No Transcript)
309(No Transcript)
310(No Transcript)
311(No Transcript)
312(No Transcript)
313(No Transcript)
314(No Transcript)
315(No Transcript)
316(No Transcript)
317(No Transcript)
318(No Transcript)
319(No Transcript)
320(No Transcript)
321(No Transcript)
322(No Transcript)
323(No Transcript)
324(No Transcript)
325(No Transcript)
326(No Transcript)
327(No Transcript)
328(No Transcript)
329(No Transcript)
330(No Transcript)
331(No Transcript)
332(No Transcript)
333(No Transcript)
334(No Transcript)
335(No Transcript)
336(No Transcript)
337(No Transcript)
338(No Transcript)
339(No Transcript)
340(No Transcript)
341(No Transcript)
342(No Transcript)
343(No Transcript)
344(No Transcript)
345(No Transcript)
346(No Transcript)
347(No Transcript)
348(No Transcript)
349(No Transcript)
350(No Transcript)
351(No Transcript)
352(No Transcript)
353(No Transcript)
354(No Transcript)
355(No Transcript)
356(No Transcript)
357(No Transcript)
358(No Transcript)
359(No Transcript)
360(No Transcript)
361(No Transcript)
362(No Transcript)
363(No Transcript)
364(No Transcript)
365(No Transcript)
366(No Transcript)
367(No Transcript)
368(No Transcript)
369(No Transcript)
370(No Transcript)
371(No Transcript)
372(No Transcript)
373(No Transcript)
374(No Transcript)
375(No Transcript)
376(No Transcript)
377(No Transcript)
378(No Transcript)
379(No Transcript)
380(No Transcript)
381(No Transcript)
382(No Transcript)
383(No Transcript)
384Seamlessly into the classical case
385Moving Stereo Pair
386Moving Stereo Pair
387Moving Stereo Pair
3886-point pose
Linear, stack 5 point constraints, results in
pencil of cameras
Projects world point onto image line
Correct point by perpendicular projection. Add
constraint and solve uniquely
389Absolute OrientationStitching
B. Horn, Closed-Form Solution of Absolute
Orientation using Unit Quaternions
390Absolute OrientationStitching
391Absolute OrientationStitching
One camera overlap
Projective 4 points, Nistér 01 Calibrated 1
point
392Geometry-Algebra Dualism
Algebraic Geometry
393Hypothesis Generation
The 5-Point Relative Pose Problem
Unknown Focal Relative Pose
10
15
2048
The Generalized 3-Point Problem
Microphone-Speaker Relative Orientation
8(4)
The 3 View 4-Point Problem
0 (or thousands)
8-38-150-344-??
394Wolfgang Gröbner (1899-1980)
Bruno Buchberger
RISC Research Institute for Symbolic
Computation Linz, Austria
395Suggested Literature
- D. Cox, J. Little, D. OShea, Ideals, Varieties,
- and Algorithms, Second Edition, 1996.
- D. Cox, J. Little, D. OShea, Using Algebraic
Geometry, Springer 1998. - T. Becker and Weispfennig, Gröbner Bases, A
Computational Approach to commutative Algebra,
Springer 1993.
396Approach
Begin (online)
Begin (offline)
Pose Problem over R
Pose Problem. Port to Zp
Compute Gröbner basis
Compute number of solutions
Elimination Schedule
Compute Action Matrix
Build matrix based Gröbner basis code
Solve Eigenproblem
Port to R
Backsubstitute
End
End
397Examples of Solved Problems
6-point generalized relative orientation (64
solutions) (Stewenius, Nistér, Oskarsson and
Åström, Omnivis 2005) 6-point relative
orientation with common but unknown focal length
(15 solutions) (Stewenius, Nistér, Schaffalitzky
and Kahl, CVPR 2005)
398Audio-Grammetry
work with Henrik Stewenius, Jens Hannemann, Kevin
Donahue
399Microphone-Speaker Location work with Henrik
Stewenius, Jens Hannemann, Kevin Donahue
400(No Transcript)
401Sparse
Dense
402Sparse Reconstruction
Structure and Motion
Feature Matching
Feature Detection
Original Video
Camera Motion
Dense Reconstruction
Window-based stereo
at multiple scales
Bayesian
Surface
Model Out
Median Fusion
framework
triangulation
driven by
of depth maps
and texturing
graph cuts
403Dense Reconstruction
404Stereo
- Feature Based Stereo
- Classical Stereo
- Dynamic Programming
- Belief Propagation
- Graph Cuts
- Color Segmentation
- Plane Sweep
- Level Sets
405Discontinuity Energy
Dissimilarity Energy
406Multi-View Depth Reconstruction
Belief Propagation
407Dynamic Programming
Image Scanline
Depth
408Belief Propagation
Image Columns
Image Scanlines
Depth
409Graph Cuts
410Graph Cuts
411Multi-View Depth Reconstruction
work with Q. Yang, L. Wang, R. Yang
- Plane-sweep stereo on GPU
412Middlebury Stereo Record
work with Q. Yang, L. Wang, R. Yang
Double-BP Highly computationally demanding even
for small images
Color-weighted correlation Real-time for small
images and few disparity levels
413Depth Map Fusion
- Main lesson simple stereo with many correlations
on many images fusion is the winning recipe
Depth map fusion
Highly optimized, computationally demanding
stereo
Simpler stereo on more data (higher number of
correlations)
414GPU Stereo
GPU
CPU
415GPU Stereo
GPU (NVIDIA 7800 GTX) 70ms
CPU (Xeon 3GHz) 3.2s
416ICP
417Alignment of Video onto 3D Point Clouds
work with Wen-Yi Zhao and Steve Hsu
Pose Estimation
Motion Stereo
ICP Alignment
418Fusion
419Median Fusion
420Stability Occlusion-Passing
Depth
421(No Transcript)
422Depth Map Fusion
- Resolves inconsistencies. Cleans up results very
efficiently - Suited for GPU implementation (essentially
consists of rendering back and forth many times)
423(No Transcript)
424(No Transcript)
425(No Transcript)
426(No Transcript)
427Depth Map Fusion
428Sparse Mesh Generation
429Computation times CPU
Single CPU processing times for single video
stream
Running the whole system with 1024x768
resolution for Radial, Tracker 2D, Tracker 3D,
Geo registration 512x384 resolution for Stereo,
Fusion, 3D model generation
seconds
430Computation times CPUGPU
Single CPU GPU processing times for single
video stream
Running the whole system with 1024x768
resolution for Radial, Tracker 2D, Tracker 3D,
Geo registration 512x384 resolution for Stereo,
Fusion, 3D model generation
seconds
431(No Transcript)
432(No Transcript)
433(No Transcript)
434(No Transcript)
435(No Transcript)
436(No Transcript)
437(No Transcript)
438(No Transcript)
439(No Transcript)
440(No Transcript)
441Camera Geometry
- Often leads to polynomial formulations,
- or can at least very often be formulated in
- terms of polynomial equations
442Polynomial Formulation
- p1(x) , , pn(x) A set of input polynomials (n
polynomials in m variables) - xy1 ym
443Algebraic Ideal
- I(p1 , , pn) The set of polynomials
- generated by the input polynomials
- (through additions and multiplications by a
polynomial) - p and q in I gt pq in I
- p in I gt pq in I
The ideal I consists of Almost all the
polynomials implied by the input
polynomials (More precisely, the radical
of the ideal consists of all)
444Remember Row Operations
- Multiplying a row by a scalar
- Subtracting a row from another
- Swap rows
Add
- Multiplying a row by any polynomial
445Multiplying by a Scalar
Transitions through zero remain
p(x)
3.8p(x)
446Adding
Common transitions through zero remain
p1(x)
p2(x)
p1(x) p2(x)
447Multiplying
Transitions through zero remain
p(x)f(x)
f(x)
p(x)
448Basis (for Ideal)
- A basis for I is a set of polynomials
- (p1 , , pn) such that II(p1 , , pn)
449Algebraic Variety
- The solution set
- (the vanishing set of the input polynomials)
V(I)xI(x)0
More precisely p(x)0 for all p in I
450Quotient Ring J/I
- The set of equivalence classes of polynomials
when only the values on V are considered (i.e.
polynomials are equivalent iff p(x)q(x) for all
x in V)
p in J/I
V(I)
451Action Matrix
- For multiplication by polynomial on finite
dimensional solution space
V(I)
452Action Matrix
Action Matrix
Companion Matrix
453An Equivalence
Compute Companion Matrix
Finding the Eigenvalues of a Matrix
Finding the Roots of a Polynomial
Compute Characteristic Polynomial
Requires Gröbner Basis for Input Equations
Compute Action Matrix in Quotient
Ring (Polynomials modulo Input Equations)
Finding the Roots of Multiple Polynomial
Equations
Finding the Eigenvalues of a Matrix
Compute Characteristic Polynomial
454Companion Matrix
a7x7 a6x6 a5x5 a4x4 a3x3 a2x2 a1xa0
x2
1
x3
x4
x5
x6
455Action Matrix
I
456Action Matrix
I
457Action Matrix
p in J
I
458Action Matrix
p in J
I
p in J/I
459Action Matrix
I
p in J/I
460Action Matrix
I
q in J/I
p in J/I
461Action Matrix
pq in J/I
I
q in J/I
p in J/I
462Action Matrix
Multiplication by a polynomial q is a linear
operator Aq
(apßr)qa(pq)ß(rq)
The matrix Aq is called the action matrix for
multiplication by q
463Action Matrix
I
464Action Matrix
I
465Action Matrix
I
466Action Matrix
The values q(xi) of q at the solutions xi are the
eigenvalues of the action matrix
I
467Action Matrix
The values q(xi) of q at the solutions xi are the
eigenvalues of the action matrix If we choose
qy1 , the eigenvalues are the solutions for y1
468Action Matrix
br1 ro
b(x)Aq pq(x)b(x)p for all p in J/I and x in
V(I)
b(x)Aq b(x)q(x) b(x) is a left nullvector of
Aq corresponding to eigenvalue q(x)
469Monomial Order
- Needed to define leading term of a polynomial
- Grevlex (Graded reverse lexicographical) order
usually most efficient
y_2
y_1
470Gröbner Basis
- A basis for ideal I that exposes the leading
terms of I (hence unique well defined remainders) - Easily gives the action matrix for multiplication
with any polynomial in the quotient ring
y_2
y_1
471A Reduced Gröbner Basis is a Basis in the normal
sense
- A polynomial in the ideal I can be written as a
unique combination of the polynomials in a
reduced Gröbner basis for I - The monic Gröbner basis for I is unique
472Buchbergers Algorithm
Buchbergers Algorithm
Euclids Algorithm for the GCD
Gaussian Elimination
473Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
474Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
475Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
476Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
477Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
478Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
479Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
480Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
481Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
482Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
483Buchbergers Algorithm
- Compute remainders of S-polynomials until all
remainders are zero
484Prime Field Formulation
- Reals gt Cancellation unclear
- Rationals gt Grows unwieldy
- Prime Field gt Cancellation clear, size is
limited, only small risk of incorrect
cancellation if prime is large
485Gaussian Elimination
- Expanding all polynomials up to a certain degree
followed by Gaussian elimination allows pivoting
486Unwanted Solutions
Can be removed by ideal quotients, or more
generally saturation
487Elimination Example
488Elimination Example
489Elimination Example
490Elimination Example
491Elimination Example
492Elimination Example
493Elimination Example
494Elimination Example
495Elimination Example
496Elimination Example
497Action Matrix
498(No Transcript)
499Stratified Self-Calibration
Introduction
Camera calibration and the search for
infinity Hartley, Hayman, de Agapito, Reid
Calibration with robust use of cheirality by
quasi-affine reconstruction of the set of camera
projection centres Nister
500Self-calibration
Pre-calibration
Less problems with critical surfaces (when
information used correctly)
Flexible
501What is the cue in self-calibration?
502(No Transcript)
503(No Transcript)
504(No Transcript)
505Distortion of the cameras is the cue that drives
self- calibration
506To move across the plane at infinity, a camera
has to go through a geometric wormhole
This makes the camera very angry and upset, in
fact it will refuse
507Quasi-affine transformationsand cheirality
A projective transformation is quasi-affine with
respect to a set iff it preserves the convex hull
of the set
508A projective transformation is affine iff it is
quasi-affine with respect to the set of all
finite points
509(No Transcript)
510(No Transcript)
511(No Transcript)
512(No Transcript)
513Each camera pair poses a question regarding the
metric baseline
?
This or This
514The question is easily answered by cheirality
since a point in front of or behind both cameras
supports the former case and a point on
different sides supports the latter.
A sequence of such binary decisions then deduces
the convex hull of the camera centres.
515Using cheirality, the convex hull of the points
and the convex hull of the cameras can be
respected (But not necessarily the convex hull of
the union)
516Metric configuration
517(No Transcript)
518(No Transcript)
519Metric configuration
520The points are not essential, convergence occurs
even from this projective equivalent