Title: Quasi-exactly solvable models in quantum mechanics and Lie algebras
1Quasi-exactly solvable models in quantum
mechanics and Lie algebras
- S. N. Dolya
- B. Verkin Institute for Low Temperature Physics
and Engineering of the National Academy of
Sciences of Ukraine
S. N. Dolya JMP, 50 (2009) S. N. Dolya JMP, 49
(2008). S. N. Dolya O. B. Zaslavskii J. Phys. A
Math. Gen. 34 (2001) S. N. Dolya O. B. Zaslavskii
J. Phys. A Math. Gen. 34 (2001) S. N. Dolya O.
B. Zaslavskii J. Phys. A Math. Gen. 33 (2000)
2Outline
- 1. QES-extension (A)
- 2. quadratic QES - Lie algebras
- 3. physical applications
- 4. QES-extension (B)
- 5. cubic QES - Lie algebras
3sl2(R)-Hamiltonians
Turbiner et al
Representation
Invariant subspace
(partial algebraization)
4What is being studied?
- Hamiltonians are formulated in terms of QES Lie
algebras.
- eigenvalues and eigenfunctions when possible.
How this is being studied?
- Nonlinear QES Lie algebras
50.
QES-extension
our strategy
- We find a general form of the operator of the
second order P2 for which subspace M2 spanf1,
f2 is preserved. - We make extension of the subspace M2 ? M4
spanf1, f2, f3, f4 - We find a general form of the operator of the
second order P4 for which subspace M4 is
preserved. - we obtain the explicit form of operator P2(N1)
that acts on the elements of the subspace M2(N1)
f1,f2,, f2(N1)
6I.
QES-extension
Select the minimal invariant subspace
7II.
QES-extension
extension for the minimal invariant subspace
Condition for the subspace M4
8III.
QES-extension
Extension for the minimal invariant subspace
Conditions of the QES-extension
Wronskian matrix
1
2
Order of derivatives
9hypergeometric function
Realization (special functions hypergeometric,
Airy, Bessel ones)
10QES-extension
act more
Particular choice of QES extension
11QES-extension Example 1
counter
12QES-extension The commutation relations of the
operators
Casimir operator
Casimir invariant
13QES-extension Example 2
counter
14QES-extension The commutation relations of the
operators
Casimir operator
Casimir invariant
15QES-extension Example 3
counter
16QES-extension The commutation relations of the
operators
17Two-photon Rabi Hamiltonian
Rabi Hamiltonian describes a two-level system
(atom) coupled to a single mode of radiation via
dipole interaction.
18Two-photon Rabi Hamiltonian
19The two-photon Rabi Hamiltonian
20The two-photon Rabi Hamiltonian
21The two-photon Rabi Hamiltonian
22Example
matrix representation
condition det(L1) 0
23QES-extension continuation Example 4 (QES qubic
Lie algebra )
24QES-extension continuation Example 4 (QES qubic
Lie algebra ) The commutation relations of the
operators
Casimir operator
Casimir invariant
25QES-extension continuation
1) Select the minimal invariant subspace
2) Select the minimal invariant subspace
Condition for the functions f(x), g(x)
26QES-extension continuation Example 5 ( QES Lie
algebra )
27QES-extension continuation Example 5 ( QES Lie
algebra )
28QES-extension continuation Example 6 ( QES Lie
algebra )
29QES-extension continuation Example 6 ( QES Lie
algebra )
30comparison
Angular Momentum
QES quadratic Lie algebra