4'3 Polar Form - PowerPoint PPT Presentation

1 / 6
About This Presentation
Title:

4'3 Polar Form

Description:

what the modulus (r) & argument (t) of z = a ib are ... And cubing in polar form gives ( cos i sin ) 3 = cos 3 i sin 3. 5 ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 7
Provided by: patriciac4
Category:
Tags: cubing | form | polar

less

Transcript and Presenter's Notes

Title: 4'3 Polar Form


1
4.3 Polar Form de Moivres Th Study Book
App B, Sec 8.3
  • Objectives know
  • what the modulus (r) argument (t) of z a
    ib are
  • how to convert a i b to polar form r (cos
    t i sin t )
  • vice versa
  • multiplying complex numbers causes their moduli
    to multiply, their arguments (angles) to add
  • dividing complex numbers causes their moduli to
    divide,
  • their arguments to subtract
  • (r cos t i r sin t) n rn ( cos nt i
    sin nt )
  • ie, de Moivres Theorem.

2
  • To change z a ib, to polar form,
  • plot z and find its polar coordinates
  • distance r , ie modulus z a
    ib v a 2 b 2 .
  • and angle t, the argument.
  • a ib

  • r
  • t
  • Then a r cos t and b r sin t .
  • Hence a ib r cos t i r
    sin t
  • r ( cos t i sin
    t )
  • the polar form of a ib.

3
  • To convert from standard form a ib to polar
    form
  • First plot aib to see its quadrant,
  • then use Pythagoras trig to get r t.
  • Example - 1 - sqrt(3) i
    -1
  • Pythagoras gives r sqrt(1 3) 2
  • r
  • Angle is (180 60) degrees 4pi/3
  • Polar form is 2 ( cos 4pi/3 i sin 4pi/3 )
    -1 - sqrt3 i
  • To convert from polar form to form a ib,
  • find a and b using a r cos t , b r sin t.
  • Example 3 (cos 3pi/4 i sin 3pi/4)
  • 3 ( -1/sqrt2 i 1/ sqrt 2)
  • - 3 / sqrt 2 i 3/
    sqrt 2

4
  • Multiplying 2 numbers in polar form gives
  • R (cosA i sinA) S(cos B i sin B) RS
    cos (AB) i sin(AB)
  • ie their moduli multiply, but their arguments
    add!
  • Dividing 2 numbers in polar form gives
  • R (cosA i sinA) / S (cos B i sin B)
    R/S cos (A-B) i sin(A-B)
  • ie their moduli divide, but their arguments
    subtract!
  • Hence squaring in polar form gives
  • R( cos ? i sin? ) 2 R2 cos 2?
    i sin 2?
  • And cubing in polar form gives
  • ( cos ? i sin? ) 3 cos 3? i sin 3?

5
  • Then de Moivres Theorem (Th 8.5, p 449)
    follows,
  • ( cos ? i sin? ) n cos n? i sin n?
  • True not only for positive integers n,
  • but also for n negative or rational.
  • Example (cos pi/6 sin pi/6 )12 cos
    2pi sin 2pi
  • 1 0 i
    1
  • Appendix B, Ex 3 4 (p 448 -9) use this rule.
  • But doing them in Euler Form is easier.
  • So master Sec 4.4 first, Euler Form, then come
    back to these.
  • Nth roots (pp 450 - 2) are also easier done in
    Euler form.

6
Homework
  • Appendix B, p 438, Sec 8.3
  • Master a few of Q 1 - 25
  • Do more of these once you have mastered Section
    4.4, converting z to Euler Form.
  • Write full solutions to
  • Q 1 - 4, 5, 7, 9, 11, 37, 43.
Write a Comment
User Comments (0)
About PowerShow.com