Title: Concurrent Test Generation
1- Concurrent Test Generation
Vishwani D. Agrawal Alok S. Doshi
Auburn University, Department of Electrical and
Computer Engineering Auburn, AL 36849, USA
Asian Test Symposium (ATS), December 18-21, 2005
2Problem Statement
- To find the smallest test set to detect all
single stuck-at faults in a combinational
circuit. - An existing solution
- Group faults into fault sets using fault
independence - Generate concurrent tests for each group
- Contribution of this paper Devise a
simulation-based implementation to this solution.
3Outline
- Introduction
- Simulation-based Independence Fault Collapsing
- Simulation-based Concurrent Test Generation
- Results
- Conclusions
4Introduction
- Problem of finding a minimal test-
- Static compaction cannot guarantee optimality.
- Dynamic compaction is complex.
- Solution Target both faults F1 and F2 at the
same time to find a single test.
.
.
.
T(F2)
T(F1)
Test set for fault F2
Test set for fault F1
v2
v1
v3
5Fault Classification
T(F1)
T(F1) T(F2)
T(F2)
F1 and F2 are equivalent.
F1 dominates F2.
T(F1)
T(F2)
T(F1)
T(F2)
F1 and F2 are independent.
F1 and F2 are concurrently testable.
6Example Circuit
2
4
a
x
1
5
b
3
7
11
c
y
d
6
10
9
All faults are Stuck-at-1 type
e
8
C17 - ISCAS85 Benchmark Circuit
1 R. K. K. R. Sandireddy and V. D. Agrawal,
Diagnostic and Detection Fault Collapsing for
Multiple Output Circuits, Proc. Design,
Automation and Test in Europe (DATE) Conf., Mar.
2005, pp. 1014 - 1019.
7Independence Matrix and Graph
F 1 2 3 4 5 6 7 8 9 10 11
1 0 1 1 1 1 1 0 0 1 0 1
2 1 0 0 1 1 0 1 0 0 0 1
3 1 0 0 0 1 1 1 1 0 1 1
4 1 1 0 0 1 0 1 0 0 0 1
5 1 1 1 1 0 0 0 1 1 1 0
6 1 0 1 0 0 0 1 1 1 0 0
7 0 1 1 1 0 1 0 1 1 0 0
8 0 0 1 0 1 1 1 0 1 1 1
9 1 0 0 0 1 1 1 1 0 1 1
10 0 0 1 0 1 0 0 1 1 0 1
11 1 1 1 1 0 0 0 1 1 1 0
C17 - ISCAS85 Benchmark Circuit
8Independence Fault Collapsing
A similarity based algorithm 2 collapses the
independence graph
5,11,7
1,8
3,9,2
4,6,10
C17 - ISCAS85 Benchmark Circuit
2 A. S. Doshi and V. D. Agrawal, Independence
Fault Collapsing, Proc. 9th VLSI Design and Test
Symp., Aug. 2005, pp. 357 - 364.
9Simulation-based Independence Fault Collapsing
- The independence graph generation procedure 2
requires ATPG. - Here we present a new method for graph generation
using simulation - Start with a fully-connected independence graph
for an equivalence collapsed fault set. - Simulation of random vectors without fault
dropping removes edges between faults detected by
the same vector.
2 A. S. Doshi and V. D. Agrawal, Independence
Fault Collapsing, Proc. 9th VLSI Design and Test
Symp., Aug. 2005, pp. 357 - 364.
10Simulation-based Independence Fault Collapsing
301
74181 4-bit ALU
11Simulation-based Concurrent Test Generation
- For each group, generate all test vectors for the
first fault in the group. - If the number of test vectors for a fault is
large, use a subset (e.g., 250 maximum) of
vectors. - Simulate all faults in the group to select one
vector that detects most faults in that group. - If more vectors than one detect the same number
of faults within the group, then select the
vector that detects most faults outside the group
as well.
1274181 4-bit ALU Result
Group Number Number of faults in group Concurrent Test Vector
1 2 3 4 5 6 7 8 9 10 11 12 13 9 15 11 6 11 17 11 16 16 22 22 56 81 01100011111100 01101100000110 10100101111010 11011010100000 10110101011010 10100111101010 10010101001110 01000111101011 11100010010011 11011100110100 01010001100001 No test needed. 10101001110110
13Results
Circuit No. of concurrent groups Concurrent ATPG Concurrent ATPG Single-fault ATPG Single-fault ATPG Single-fault ATPG Single-fault ATPG
Circuit No. of concurrent groups Vectors CPU s Atalanta Atalanta Best known Best known
Circuit No. of concurrent groups Vectors CPU s Vectors CPU s Vectors CPU s
1-b adder 2-b adder 4-b adder 8-b adder 16-b adder 32-b adder 4-b ALU c17 c423 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552 5 5 5 7 7 7 13 4 30 52 24 84 106 81 107 92 23 190 5 5 5 7 9 11 12 4 34 52 29 84 111 92 130 104 25 198 0.085 0.092 0.103 0.182 3.3 9.7 11.4 0.082 10.4 14.6 23.3 34 49.6 57.6 119.6 216.3 158.1 360.7 5-7 7-9 8-11 10-15 13-22 17-25 22-40 6-9 49-77 54-68 52-106 85-109 118-173 106-192 147-263 114-224 32-48 209-358 0 0 0 0 0.017 0.050 0.033 0 0.083 0.033 0.133 0.1 0.5 1.2 1.9 0.733 4.7 5.283 5 5 5 5 5 5 12 4 27 52 16 84 106 44 84 37 12 73 - - - - - - - - 15 0.1 21.9 0.9 88.1 47.1 174.5 748.6 347.7 663.8
Sun Ultra 5 Pentium Pro PC
Hamzaoglu and Patel, IEEE-TCAD, 2000
14Conclusions
- Concurrent test generation produces compact tests
when combined with independence fault collapsing. - ATPG and set covering problems have exponential
time complexities. Hence, we cannot expect
absolute optimality for large circuits. - The concurrent ATPG procedure of this paper gives
significantly smaller, and sometimes the optimum,
test sets.
15