Title: Dynamics and thermodynamics of quantum spins at low temperature
1Dynamics and thermodynamicsof quantum spins at
low temperature
Andrea Morello
Kamerlingh Onnes Laboratory
UBC PhysicsAstronomy
TRIUMF
Leiden University
2CaF2
CaF2 the fruit fly of spin systems
CaF2 Non-magnetic insulator 19F simple cubic
lattice of nuclear spins 1/2 with 100 natural
abundance
3CaF2
CaF2 the fruit fly of spin systems
P.L. Kuhns et al., PRB 35, 4591 (1987)
4Single-molecule magnets
Stoichiometric compounds based on macromolecules,
each containing a core of magnetic ions
surrounded by organic ligands, and assembled in
an insulating crystalline structure
e.g. Mn12 12 Mn ions
5Mn12
4 Mn4 ions ? s 3/2
8 Mn3 ions ? s 2
Total spin 10 The whole cluster behaves as a
nanometer-size magnet.
6Crystalline structure
? 15 Ã…
The clusters are assembled in a crystalline
structure, with relatively small (dipolar)
inter-cluster interactions
D. Gatteschi et al., Science 265, 1054 (1994)
7Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
8Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
9Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
10Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
11Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
12Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
13Magnetic anisotropy
z
H -DSz2
Classically, it takes an energy ? 65 K to reverse
the spin.
14Quantum tunneling of magnetization
z
H -DSz2
H -DSz2 C(S4 S-4)
Degenerate states
15Quantum tunneling of magnetization
z
H -DSz2 C(S4 S-4)
Quantum mechanically, the spin of the molecule
can be reversed by tunneling through the barrier
L. Thomas et al., Nature 383, 145 (1996)
16Macroscopic quantum superposition
? 10-11 - 10-7 K
The actual eigenstates of the molecular spin are
quantum superpositions of macroscopically
different states
17External field ? z
H -DSz2 C(S4 S-4) - g?BSxBx
The application of a perpendicular field allows
to artificially introduce non-diagonal elements
in the spin Hamiltonian
18Quantum coherence
t
h/?
Prototype of spin qubit with tunable operating
frequency
P.C.E. Stamp and I.S. Tupitsyn, PRB 69, 014401
(2004)A. Morello, P.C.E. Stamp and I.S.
Tupitsyn, cond-mat/0605709 (2006)
19Quantum coherence
A. Morello, P.C.E. Stamp and I.S. Tupitsyn,
cond-mat/0605709 (2006)
20Decoherence rates
optimal coherent operation point at T 50 mK
Q ? 107
A. Morello, P.C.E. Stamp and I.S. Tupitsyn,
cond-mat/0605709 (2006)
21Nuclear spin bath
Intrinsic source of decoherence
N.V. Prokofev and P.C.E. Stamp, J. Low Temp.
Phys. 104, 143 (1996)
22Nuclear bias
23Nuclear bias
24Nuclear bias
25Nuclear bias
26Nuclear bias
27Nuclear bias
28Nuclear bias
The nuclear spin dynamics allows incoherent
tunneling
The electron spin tunneling triggers nuclear spin
dynamics
29Nuclear relaxation ? electron spin fluctuations
Energy
At low temperature, the field produced by the
electrons on the nuclei is quasi-static ? NMR in
zero external field
The fluctuations of the electron spins induce
nuclear relaxation ? nuclei are local probes for
(quantum?) fluctuations
30Nuclear relaxation inversion recovery
31Quantum tunneling
The nuclear spin relaxation is sensitive to
quantum tunneling fluctuations
A. Morello et al., PRL 93, 197202 (2004)
32Precessional decoherence
hyperfine field
nuclear spin
33Precessional decoherence
? ? 0 for 55Mn nuclei
34Topological decoherence
35Tunneling timescales
h?0
? 10 K 200 GHz
?0 frequency of the small oscillations on the
bottom of the potential well
? 10-12 s
?T ? 1 s
???
t
???
?T time between subsequent incoherent tunneling
events
36Topological decoherence
? nuclear spins flipped by adiabatically
following the new local field
? 0
?0 is the bounce frequency
The 55Mn nuclei cannot adiabatically follow a
tunneling event
37Hyperfine-split manifolds
M M - 1 M - 2 M - 3
- M - M 1 - M 2
E0
M - 3 M - 2 M - 1 M
- M 2 - M 1 - M
The hyperfine fields before and after tunneling
are antiparallel
? The hyperfine-split manifolds
on either sides of the barrier are simply
mirrored with respect to the local nuclear
polarization.
N.V. Prokofev and P.C.E. Stamp, cond-mat/9511011
(1995)
38Tunneling rate - unbiased case
since ?,? ? 0 ?0 gtgt ?ngt0
?n ?n(?,?)
The most probable tunneling transition (without
coflipping nuclei) is between states with zero
nuclear polarization.
39Biased case
? e.g. dipolar field from neighboring
clusters or external field
?
Tunneling ? swapping dipolar and hyperfine energy
40Tunneling rates
m8
m9
m10
?m2 / E0m2
?m2 e-
?m / ?0m
e -
?m-1 (?)
?? h E0m
41Nuclear spin temperature
The nuclear spins are in thermal equilibrium with
the lattice
42Dipolar magnetic ordering of cluster spins
Tc ? 0.16 K
Mn6 S 12 High symmetry Small anisotropy Fast
relaxation
A. Morello et al., PRL 90, 017906 (2003)
PRB 73, 134406 (2006)
43Dipolar magnetic ordering of cluster spins
Mn4 S 9/2 Lower symmetry Larger
anisotropy Fast enough quantum relaxation
The electron spins can reach thermal equilibrium
with the lattice by quantum relaxation
M. Evangelisti et al., PRL 93, 117202 (2004)
44Isotope effect
Fe8 S 10 Low symmetry Large
anisotropy Isotopically substituted 57Fe, I 1/2
? 56Fe, I 0
Enrichment with I 1/2 isotopes speeds up the
quantum relaxation
M. Evangelisti et al., PRL 95, 227206 (2005)
45Isotope effect
Sample with proton spins substituted by
deuterium ?proton
6.5
?deuterium
W. Wernsdorfer et al., PRL 84, 2965 (2000)
46Isotope effect in the nuclear relaxation
Sample with proton spins substituted by
deuterium ?proton
6.5
?deuterium
The reduced tunneling rate is directly measured
by the 55Mn relaxation rate
47Landau-Zener tunneling
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
48Landau-Zener tunneling
P
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
49Landau-Zener tunneling
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
50Landau-Zener tunneling
P
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
51Landau-Zener tunneling
P
P
?
P P
Can these probabilities be different?
52A wealth of detailed information
Including
- quantum dynamics probed by nuclear spins
53A wealth of detailed information
Including
- quantum dynamics probed by nuclear spins
54A wealth of detailed information
Including
- quantum dynamics probed by nuclear spins
- dipolar ordering and thermal equilibrium
55Coherent ? Incoherent
t
Benchmark system for decoherence studies
56Acknowledgements
P.C.E. Stamp, I.S. Tupitsyn, W.N. Hardy, G.A.
Sawatzky (UBC Vancouver) O.N. Bakharev, H.B.
Brom, L.J. de Jongh (Kamerlingh Onnes lab -
Leiden) Z. Salman, R.F. Kiefl (TRIUMF
Vancouver) M. Evangelisti (INFM -
Modena) R. Sessoli, D. Gatteschi, A.
Caneschi (Firenze) G. Christou, M. Murugesu, D.
Foguet (U of Florida - Gainesville) G.
Aromi (Barcelona)