Dynamics and thermodynamics of quantum spins at low temperature - PowerPoint PPT Presentation

About This Presentation
Title:

Dynamics and thermodynamics of quantum spins at low temperature

Description:

nuclear spins flipped by precession. around the new local field. Precessional ... nuclear spins flipped by adiabatically. following the new local field i = /2 ... – PowerPoint PPT presentation

Number of Views:15
Avg rating:3.0/5.0
Slides: 57
Provided by: pitpas1
Category:

less

Transcript and Presenter's Notes

Title: Dynamics and thermodynamics of quantum spins at low temperature


1
Dynamics and thermodynamicsof quantum spins at
low temperature
Andrea Morello
Kamerlingh Onnes Laboratory
UBC PhysicsAstronomy
TRIUMF
Leiden University
2
CaF2
CaF2 the fruit fly of spin systems
CaF2 Non-magnetic insulator 19F simple cubic
lattice of nuclear spins 1/2 with 100 natural
abundance
3
CaF2
CaF2 the fruit fly of spin systems
P.L. Kuhns et al., PRB 35, 4591 (1987)
4
Single-molecule magnets
Stoichiometric compounds based on macromolecules,
each containing a core of magnetic ions
surrounded by organic ligands, and assembled in
an insulating crystalline structure
e.g. Mn12 12 Mn ions
5
Mn12
4 Mn4 ions ? s 3/2
8 Mn3 ions ? s 2
Total spin 10 The whole cluster behaves as a
nanometer-size magnet.
6
Crystalline structure
? 15 Ã…
The clusters are assembled in a crystalline
structure, with relatively small (dipolar)
inter-cluster interactions
D. Gatteschi et al., Science 265, 1054 (1994)
7
Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
8
Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
9
Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
10
Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
11
Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
12
Magnetic anisotropy
z
H -DSz2
The magnetic moment of the molecule is
preferentially aligned along the z axis.
13
Magnetic anisotropy
z
H -DSz2
Classically, it takes an energy ? 65 K to reverse
the spin.
14
Quantum tunneling of magnetization
z
H -DSz2
H -DSz2 C(S4 S-4)
Degenerate states
15
Quantum tunneling of magnetization
z
H -DSz2 C(S4 S-4)
Quantum mechanically, the spin of the molecule
can be reversed by tunneling through the barrier
L. Thomas et al., Nature 383, 145 (1996)
16
Macroscopic quantum superposition
? 10-11 - 10-7 K
The actual eigenstates of the molecular spin are
quantum superpositions of macroscopically
different states
17
External field ? z
H -DSz2 C(S4 S-4) - g?BSxBx
The application of a perpendicular field allows
to artificially introduce non-diagonal elements
in the spin Hamiltonian
18
Quantum coherence
t
h/?
Prototype of spin qubit with tunable operating
frequency
P.C.E. Stamp and I.S. Tupitsyn, PRB 69, 014401
(2004)A. Morello, P.C.E. Stamp and I.S.
Tupitsyn, cond-mat/0605709 (2006)
19
Quantum coherence
A. Morello, P.C.E. Stamp and I.S. Tupitsyn,
cond-mat/0605709 (2006)
20
Decoherence rates
optimal coherent operation point at T 50 mK
Q ? 107
A. Morello, P.C.E. Stamp and I.S. Tupitsyn,
cond-mat/0605709 (2006)
21
Nuclear spin bath
Intrinsic source of decoherence
N.V. Prokofev and P.C.E. Stamp, J. Low Temp.
Phys. 104, 143 (1996)
22
Nuclear bias
23
Nuclear bias
24
Nuclear bias
25
Nuclear bias
26
Nuclear bias
27
Nuclear bias
28
Nuclear bias
The nuclear spin dynamics allows incoherent
tunneling
The electron spin tunneling triggers nuclear spin
dynamics
29
Nuclear relaxation ? electron spin fluctuations
Energy
At low temperature, the field produced by the
electrons on the nuclei is quasi-static ? NMR in
zero external field
The fluctuations of the electron spins induce
nuclear relaxation ? nuclei are local probes for
(quantum?) fluctuations
30
Nuclear relaxation inversion recovery
31
Quantum tunneling
The nuclear spin relaxation is sensitive to
quantum tunneling fluctuations
A. Morello et al., PRL 93, 197202 (2004)
32
Precessional decoherence
hyperfine field
nuclear spin
33
Precessional decoherence
? ? 0 for 55Mn nuclei
34
Topological decoherence
35
Tunneling timescales
h?0
? 10 K 200 GHz
?0 frequency of the small oscillations on the
bottom of the potential well
? 10-12 s
?T ? 1 s
???
t
???
?T time between subsequent incoherent tunneling
events
36
Topological decoherence
? nuclear spins flipped by adiabatically
following the new local field
? 0
?0 is the bounce frequency
The 55Mn nuclei cannot adiabatically follow a
tunneling event
37
Hyperfine-split manifolds
M M - 1 M - 2 M - 3
- M - M 1 - M 2
E0
M - 3 M - 2 M - 1 M
- M 2 - M 1 - M
The hyperfine fields before and after tunneling
are antiparallel
? The hyperfine-split manifolds
on either sides of the barrier are simply
mirrored with respect to the local nuclear
polarization.
N.V. Prokofev and P.C.E. Stamp, cond-mat/9511011
(1995)
38
Tunneling rate - unbiased case
since ?,? ? 0 ?0 gtgt ?ngt0
?n ?n(?,?)
The most probable tunneling transition (without
coflipping nuclei) is between states with zero
nuclear polarization.
39
Biased case
? e.g. dipolar field from neighboring
clusters or external field
?
Tunneling ? swapping dipolar and hyperfine energy
40
Tunneling rates
m8
m9
m10
?m2 / E0m2
?m2 e-
?m / ?0m
e -
?m-1 (?)
?? h E0m
41
Nuclear spin temperature
The nuclear spins are in thermal equilibrium with
the lattice
42
Dipolar magnetic ordering of cluster spins
Tc ? 0.16 K
Mn6 S 12 High symmetry Small anisotropy Fast
relaxation
A. Morello et al., PRL 90, 017906 (2003)
PRB 73, 134406 (2006)
43
Dipolar magnetic ordering of cluster spins
Mn4 S 9/2 Lower symmetry Larger
anisotropy Fast enough quantum relaxation
The electron spins can reach thermal equilibrium
with the lattice by quantum relaxation
M. Evangelisti et al., PRL 93, 117202 (2004)
44
Isotope effect
Fe8 S 10 Low symmetry Large
anisotropy Isotopically substituted 57Fe, I 1/2
? 56Fe, I 0
Enrichment with I 1/2 isotopes speeds up the
quantum relaxation
M. Evangelisti et al., PRL 95, 227206 (2005)
45
Isotope effect
Sample with proton spins substituted by
deuterium ?proton
6.5
?deuterium
W. Wernsdorfer et al., PRL 84, 2965 (2000)
46
Isotope effect in the nuclear relaxation
Sample with proton spins substituted by
deuterium ?proton
6.5
?deuterium
The reduced tunneling rate is directly measured
by the 55Mn relaxation rate
47
Landau-Zener tunneling
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
48
Landau-Zener tunneling
P
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
49
Landau-Zener tunneling
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
50
Landau-Zener tunneling
P
?
C. Zener, Proc. R. Soc. London A 137, 696 (1932)
51
Landau-Zener tunneling
P
P
?
P P
Can these probabilities be different?
52
A wealth of detailed information
Including
  • quantum dynamics probed by nuclear spins

53
A wealth of detailed information
Including
  • quantum dynamics probed by nuclear spins

54
A wealth of detailed information
Including
  • quantum dynamics probed by nuclear spins
  • dipolar ordering and thermal equilibrium

55
Coherent ? Incoherent
t
Benchmark system for decoherence studies
56
Acknowledgements
P.C.E. Stamp, I.S. Tupitsyn, W.N. Hardy, G.A.
Sawatzky (UBC Vancouver) O.N. Bakharev, H.B.
Brom, L.J. de Jongh (Kamerlingh Onnes lab -
Leiden) Z. Salman, R.F. Kiefl (TRIUMF
Vancouver) M. Evangelisti (INFM -
Modena) R. Sessoli, D. Gatteschi, A.
Caneschi (Firenze) G. Christou, M. Murugesu, D.
Foguet (U of Florida - Gainesville) G.
Aromi (Barcelona)
Write a Comment
User Comments (0)
About PowerShow.com