Title: Quantum Criticality and
1Quantum Criticality and Black Holes
Talk online sachdev.physics.harvard.edu
2Condensed matter theorists
Particle theorists
Sean Hartnoll, KITP Christopher Herzog,
Princeton Pavel Kovtun, Victoria Dam Son,
Washington
Markus Mueller, Harvard Lars Fritz, Harvard Subir
Sachdev, Harvard
3Three foci of modern physics
4Three foci of modern physics
5Three foci of modern physics
6Three foci of modern physics
7Three foci of modern physics
8Three foci of modern physics
Universal description of fluids based upon
conservation laws and positivity of entropy
production
9Three foci of modern physics
10Three foci of modern physics
11Three foci of modern physics
12Three foci of modern physics
13Three foci of modern physics
14Three foci of modern physics
Black holes
15(No Transcript)
16Antiferromagnetic (Neel) order in the insulator
No entanglement of spins
17Antiferromagnetic (Neel) order in the insulator
Excitations 2 spin waves (Goldstone modes)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25Quantum critical point with non-local
entanglement in spin wavefunction
M. Matsumoto, C. Yasuda, S. Todo, and H.
Takayama, Phys. Rev.B 65, 014407 (2002).
26CFT3
27TlCuCl3
28Pressure in TlCuCl3
29TlCuCl3 at ambient pressure
triplon
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer,
H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev.
B 63 172414 (2001).
30TlCuCl3 with varying pressure
Christian Ruegg, Bruce Normand, Masashige
Matsumoto, Albert Furrer, Desmond McMorrow, Karl
Kramer, HansUlrich Gudel, Severian Gvasaliya,
Hannu Mutka, and Martin Boehm, Phys. Rev. Lett.
100, 205701 (2008)
31S1/2 insulator on the square lattice
A.W. Sandvik, Phys. Rev. Lett. 98, 227202
(2007). R.G. Melko and R.K. Kaul, Phys. Rev.
Lett. 100, 017203 (2008).
32S1/2 insulator on the square lattice
Phase diagram
A.W. Sandvik, Phys. Rev. Lett. 98, 227202
(2007). R.G. Melko and R.K. Kaul, Phys. Rev.
Lett. 100, 017203 (2008).
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). T. Senthil, A. Vishwanath, L. Balents, S.
Sachdev and M.P.A. Fisher, Science 303, 1490
(2004).
33Theory for loss of Neel order
34S1/2 insulator on the square lattice
Phase diagram
35S1/2 insulator on the square lattice
CFT3
RG flow of gauge coupling
36d-wave superconductor on the square lattice
CFT3
R. K. Kaul, Y. B. Kim, S. Sachdev, and T.
Senthil, Nature Physics 4, 28 (2008) R. K. Kaul,
M.A. Metlitski, S. Sachdev, and C. Xu,
arXiv0804.1794
37U(1) gauge theory with N 4 supersymmetry
CFT3
N. Seiberg and E. Witten, hep-th/9607163 K.A.
Intriligator and N. Seiberg, hep-th/9607207 A.
Kapustin and M. J. Strassler, hep-th/9902033
38SU(N) gauge theory with N 8 supersymmetry (SYM3)
39(No Transcript)
40 Graphene
41Three foci of modern physics
42Three foci of modern physics
43Three foci of modern physics
44Superfluid-insulator transition
Indium Oxide films
G. Sambandamurthy, A. Johansson, E. Peled, D.
Shahar, P. G. Bjornsson, and K. A. Moler,
Europhys. Lett. 75, 611 (2006).
45Superfluid-insulator transition
M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
46(No Transcript)
47(No Transcript)
48Classical vortices and wave oscillations of the
condensate
49Superfluid-insulator transition
Indium Oxide films
G. Sambandamurthy, A. Johansson, E. Peled, D.
Shahar, P. G. Bjornsson, and K. A. Moler,
Europhys. Lett. 75, 611 (2006).
50(No Transcript)
51Dilute Boltzmann/Landau gas of particle and holes
52Superfluid-insulator transition
Indium Oxide films
G. Sambandamurthy, A. Johansson, E. Peled, D.
Shahar, P. G. Bjornsson, and K. A. Moler,
Europhys. Lett. 75, 611 (2006).
53(No Transcript)
54CFT at Tgt0
55Quantum critical transport
S. Sachdev, Quantum Phase Transitions, Cambridge
(1999).
56Quantum critical transport
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
57Quantum critical transport
P. Kovtun, D. T. Son, and A. Starinets, Phys.
Rev. Lett. 94, 11601 (2005) , 8714 (1997).
58Superfluid-insulator transition
Indium Oxide films
G. Sambandamurthy, A. Johansson, E. Peled, D.
Shahar, P. G. Bjornsson, and K. A. Moler,
Europhys. Lett. 75, 611 (2006).
59Three foci of modern physics
60Three foci of modern physics
61Three foci of modern physics
62Black Holes
Objects so massive that light is gravitationally
bound to them.
63Black Holes
Objects so massive that light is gravitationally
bound to them.
The region inside the black hole horizon is
causally disconnected from the rest of the
universe.
64Black Hole Thermodynamics
Bekenstein and Hawking discovered astonishing
connections between the Einstein theory of black
holes and the laws of thermodynamics
65Black Hole Thermodynamics
Bekenstein and Hawking discovered astonishing
connections between the Einstein theory of black
holes and the laws of thermodynamics
66AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Maldacena, Gubser, Klebanov, Polyakov, Witten
67AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
A 21 dimensional system at its quantum critical
point
Maldacena, Gubser, Klebanov, Polyakov, Witten
68AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Maldacena, Gubser, Klebanov, Polyakov, Witten
69AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Black hole temperature temperature of quantum
criticality
Maldacena, Gubser, Klebanov, Polyakov, Witten
70AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Black hole entropy entropy of quantum
criticality
Strominger, Vafa
71AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Quantum critical dynamics waves in curved space
Maldacena, Gubser, Klebanov, Polyakov, Witten
72AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Friction of quantum criticality waves falling
into black hole
Kovtun, Policastro, Son
73Three foci of modern physics
74Three foci of modern physics
1
75Hydrodynamics of quantum critical systems
1. Use quantum field theory quantum transport
equations classical hydrodynamics Uses
physical model but strong-coupling makes
explicit solution difficult
76Three foci of modern physics
1
77Three foci of modern physics
1
2
78Hydrodynamics of quantum critical systems
1. Use quantum field theory quantum transport
equations classical hydrodynamics Uses
physical model but strong-coupling makes
explicit solution difficult
2. Solve Einstein-Maxwell equations in the
background of a black hole in AdS space
Yields hydrodynamic relations which apply to
general classes of quantum critical systems.
First exact numerical results for transport
co-efficients (for supersymmetric systems).
79Hydrodynamics of quantum critical systems
1. Use quantum field theory quantum transport
equations classical hydrodynamics Uses
physical model but strong-coupling makes
explicit solution difficult
2. Solve Einstein-Maxwell equations in the
background of a black hole in AdS space
Yields hydrodynamic relations which apply to
general classes of quantum critical systems.
First exact numerical results for transport
co-efficients (for supersymmetric systems).
Find perfect agreement between 1. and 2. In
some cases, results were obtained by 2. earlier !!
80Applications
1. Magneto-thermo-electric transport in graphene
and near the superconductor-insulator
transition Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
81Applications
1. Magneto-thermo-electric transport in graphene
and near the superconductor-insulator
transition Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
82(No Transcript)
83 Graphene
Quantum critical
84(No Transcript)
85(No Transcript)
86 Cuprates
Thermoelectric measurements
CFT3?
87S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
88S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
89S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
90LSCO Experiments
Theory for
Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73,
024510 (2006).
91(No Transcript)
92Applications
1. Magneto-thermo-electric transport in graphene
and near the superconductor-insulator
transition Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
93Applications
1. Magneto-thermo-electric transport in graphene
and near the superconductor-insulator
transition Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
94AuAu collisions at RHIC
Quark-gluon plasma can be described as quantum
critical QCD
95Phases of nuclear matter
96S1/2 Fermi gas at a Feshbach resonance
97(No Transcript)
98(No Transcript)
99(No Transcript)
100T. Schafer, Phys. Rev. A 76, 063618 (2007). A.
Turlapov, J. Kinast, B. Clancy, Le Luo, J.
Joseph, J. E. Thomas, J. Low Temp. Physics 150,
567 (2008)
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)
105Conclusions
- Theory for transport near quantum phase
transitions in superfluids and antiferromagnets - Exact solutions via black hole mapping have
yielded first exact results for transport
co-efficients in interacting many-body systems,
and were valuable in determining general
structure of hydrodynamics. - Theory of Nernst effect near the
superfluid-insulator transition, and connection
to cuprates. - Quantum-critical magnetotransport in graphene.