Title: Kein Folientitel
1Few-body quantum dynamics in strong fields From
"simple" single ionisation to exploding molecular
clocks
Bernold Feuerstein, Artem Rudenko, Karl Zrost,
Vitor L. B. de Jesus, Claus Dieter Schröter,
Robert Moshammer and Joachim Ullrich
Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, 69117 Heidelberg
2Outline
- Single ionisation of atoms
- Multiple ionisation of atoms
3Experiment Reaction Microscope
Momentum resolution ?P lt 0.02 a.u.
Ultrashort pulses 6-7 fs
4Reaction Microscope
5Single ionisation of atoms
6Single ionisation of atoms
Keldysh parameter
? gt 1 Multiphoton (Above Threshhold) Ionisation
7Single ionisation of atoms
Keldysh parameter
? lt 1 Tunnel ionisation
Transverse momentum distribution
2-step process
8Ion momentum distribution He, 23fs
? 0.31 0.58
9Ion momentum distribution Ne, 23fs
10Ion momentum distribution Ar, 23fs
11 Electron energy spectra Ne, 23 fs
counts
No ponderomotive shifts observed!
12Two-dimensional electron momentum distributions
13Two-dimensional electron momentum distributions
0.25 PW/cm2
He 1.0 PW/cm2
? 0.45
Ne 1.0 PW/cm2
? 0.42
P? a.u.
Ar 1.0 PW/cm2
? 0.36
-1.0 -0.8 0.6 0.4 0.2 0 0.2
0.4 0.6 0.8 1.0
P?? a.u.
14Two-dimensional electron momentum distributions
Ultrashort pulses
No resonance-like structures resolved!
15Single ionisation Conclusions
- Smooth transition from multiphoton to tunneling
ionisation
- Target dependence near zero momenta
- Minimum for He and Ne, maximum for Ar
- No ponderomotive shifts observed
resonance-like structures - Contribution of resonant processes can explain
the absence - of ponderomotive shifts
- Rich structures in two-dimensional electron
momentum spectra
- Multiphoton features of the process are washed
out - for a few-cycle pulse
16Double and multiple ionisation of atoms
17Double and multiple ionisation of atoms
Features of strong-field ionisation
1014 1015 W/cm2
E(t) E0 sin(wt)
- Field (tunnel) ionisation
pd (qE0/w)cos(wt) 2q (Up)1/2 cos(wt)
- Drift momentum related to phase
18Mechanisms for strong-field double ionisation
sequential
nonsequential
recollision (e,2e)
recollision-excitation subsequent tunnelling
19He, Ne, Ar strong-field double ionisation
sequential
V. B. L. de Jesus et al. JPB 37 (2004) L161
20Influence of the atomic structure a simple model
Cross sections for
Initial phase average
V. B. L. de Jesus et al. JPB 37 (2004) L161
21Multiple ionisation
Sequential
22Sequential
23Multiple ionisation of Ar ion yield ratio
Y4 / Y3
24Mechanisms for strong-field multiple ionisation
(2n ?2.52(m ?1))(Up)1/2
Feuerstein et al. JPB 33 (2000) L823
25? life time (pulse duration)
26Lifetime of excited states? - Pulse duration
dependence
27Multiple ionisation of Ar ion yield ratio
23 fs
6-7 fs
Y4 / Y3
28Double and multiple ionisation Conclusions
- First systematic study of ion momentum
distributions for strong-field - double and multiple ionisation of noble gases
(He, Ne, Ar)
- Core excitation during recollision dominates
nonsequential double - ionisation for He and Ar
- Recollision (e,ne) is the dominating mechanism
for creation of - Ne2, Ne3 and Ne4 ions (double-hump
structure)
- Multiple ionisation mechanism for argon is more
complex - most likely combined sequential and
nonsequential processes - enhanced double-hump structure for ultrashort
pulses - indicates importance of core excitations
29Molecular fragmentation
Confusion reigns when Sir James Dwighton is
murdered... Luckily, his broken clock tells the
tale -- or does it?
What do broken (Coulomb-exploded) molecular
clocks tell us? Does confusion reign also here?
30Hydrogen molecular potential curves in a strong
laser field
Fragmentation channels
Single ionisation (SI) H2 ? H2 e-
2ppu
H H
Dissociation H2 ? H H0
H H(2p)
- 1- and 2-photon net absorption
2psu
H H(1s)
Double ionisation (Coulomb explosion, CE) H2 ?
H H e-
1w
Dressed states
2w
1ssg
3w
H2
- Sequential (field) double ionisation (SDI)
- enhanced _at_ R 5 10 a.u. (CREI)
H(1s) H(1s)
H2
- excitation with subsequent field ionisation
31H2 (D2) as a molecular clock
Principle of a molecular clock based on the
propagation of electronic (recollision) and
nuclear wavepacktes
H. Niikura et al. Nature 417 (2002) 917, 421
(2003) 826
But
works only if the fragmentation path can be
identified
Recent progress
A.S. Alnaser et al. PRL 91 (2003) 163002
Experiment coincident detection of emitted
protons
Theory comprehensive model including
recollision-excitation and ionisation
X.M. Tong, Z.X. Zhao and C.D. Lin PRL 91 (2003)
233203 PRA 68 (2003) 043412
? recollision-excitation is the dominating
mechanism for both dissociation and double
ionisation channels producing high-energy
fragments
32From short to ultrashort pulses non-coincident
spectra
H2
Dissociation
2 w
1 w
33From short to ultrashort pulses coincident
spectra
23 fs
Due to
momentum conservation true
coincidence events lie near the P1 - P2
diagonal!
34 6 fs
-20 0
20 40
40 20 0 -20 -40
Sequential ionisation?
P2 a.u.
counts (log scale)
P1 a.u.
35Molecular fragmentation Conclusions
- Dynamics of the H2 fragmentation depends
drastically - on the pulse duration
- Charge-resonant enhanced ionisation (CREI) is
suppressed for 6 fs
- Coincidence measurements provide a method to
distinguish - dissociation and double ionisation
contributions within the - same energy range
36Open questions and outlook
- Single ionisation
- More detailed measurements with well-controlled
few-cycle pulses - Other targets, broader range of ?, molecules,
atomic hydrogen - Ultrashort pulses absolute phase effects
- Multiple ionisation
- Towards higher and lower intensities (transition
to sequential regime / - threshold effects fpr recollision
- More on correlated electron dynamics
- Ultrashort pulses absolute phase effects
- Molecular fragmentation
- Origin of low-energy Coulomb explosion peaks
- dependence on temporal pulse shape
- Branching ratios for different fragmentation
channels - Electron dynamics breakdown of
Born-Oppenheimer approximation?
37Acknowledgment
Claus Dieter Schröter
Robert Moshammer (Head of the group)
Artem Rudenko
Karl Zrost
Vitor Luiz Bastos de Jesus