Kein Folientitel - PowerPoint PPT Presentation

About This Presentation
Title:

Kein Folientitel

Description:

Max-Planck-Institut f r Kernphysik, Saupfercheckweg 1, 69117 ... 1: Multiphoton (Above Threshhold) Ionisation. Ionisation rate: Ek = N h - Ip* Electron energy: ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 38
Provided by: arbeitsgru
Category:

less

Transcript and Presenter's Notes

Title: Kein Folientitel


1
Few-body quantum dynamics in strong fields From
"simple" single ionisation to exploding molecular
clocks
Bernold Feuerstein, Artem Rudenko, Karl Zrost,
Vitor L. B. de Jesus, Claus Dieter Schröter,
Robert Moshammer and Joachim Ullrich
Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, 69117 Heidelberg
2
Outline
  • Experimental set-up
  • Single ionisation of atoms
  • Multiple ionisation of atoms
  • Molecular fragmentation

3
Experiment Reaction Microscope
Momentum resolution ?P lt 0.02 a.u.
Ultrashort pulses 6-7 fs
4
Reaction Microscope
5
Single ionisation of atoms
6
Single ionisation of atoms
Keldysh parameter
? gt 1 Multiphoton (Above Threshhold) Ionisation
7
Single ionisation of atoms
Keldysh parameter
? lt 1 Tunnel ionisation
Transverse momentum distribution
2-step process
8
Ion momentum distribution He, 23fs
? 0.31 0.58
9
Ion momentum distribution Ne, 23fs
10
Ion momentum distribution Ar, 23fs
11

Electron energy spectra Ne, 23 fs

counts
No ponderomotive shifts observed!
12
Two-dimensional electron momentum distributions
13
Two-dimensional electron momentum distributions
0.25 PW/cm2
He 1.0 PW/cm2
? 0.45
Ne 1.0 PW/cm2
? 0.42
P? a.u.
Ar 1.0 PW/cm2
? 0.36
-1.0 -0.8 0.6 0.4 0.2 0 0.2
0.4 0.6 0.8 1.0
P?? a.u.
14
Two-dimensional electron momentum distributions
Ultrashort pulses
No resonance-like structures resolved!
15
Single ionisation Conclusions
  • Smooth transition from multiphoton to tunneling
    ionisation
  • Target dependence near zero momenta
  • Minimum for He and Ne, maximum for Ar
  • No ponderomotive shifts observed
    resonance-like structures
  • Contribution of resonant processes can explain
    the absence
  • of ponderomotive shifts
  • Rich structures in two-dimensional electron
    momentum spectra
  • Multiphoton features of the process are washed
    out
  • for a few-cycle pulse

16
Double and multiple ionisation of atoms
17
Double and multiple ionisation of atoms
Features of strong-field ionisation
1014 1015 W/cm2
E(t) E0 sin(wt)
  • Field (tunnel) ionisation
  • Recollision

pd (qE0/w)cos(wt) 2q (Up)1/2 cos(wt)
  • Drift momentum related to phase

18
Mechanisms for strong-field double ionisation
sequential
nonsequential
recollision (e,2e)
recollision-excitation subsequent tunnelling
19
He, Ne, Ar strong-field double ionisation
sequential
V. B. L. de Jesus et al. JPB 37 (2004) L161
20
Influence of the atomic structure a simple model
Cross sections for
Initial phase average
V. B. L. de Jesus et al. JPB 37 (2004) L161
21
Multiple ionisation
Sequential
22
Sequential
23
Multiple ionisation of Ar ion yield ratio
Y4 / Y3
24
Mechanisms for strong-field multiple ionisation
(2n ?2.52(m ?1))(Up)1/2
Feuerstein et al. JPB 33 (2000) L823
25
? life time (pulse duration)
26
Lifetime of excited states? - Pulse duration
dependence
27
Multiple ionisation of Ar ion yield ratio
23 fs
6-7 fs
Y4 / Y3
28
Double and multiple ionisation Conclusions
  • First systematic study of ion momentum
    distributions for strong-field
  • double and multiple ionisation of noble gases
    (He, Ne, Ar)
  • Core excitation during recollision dominates
    nonsequential double
  • ionisation for He and Ar
  • Recollision (e,ne) is the dominating mechanism
    for creation of
  • Ne2, Ne3 and Ne4 ions (double-hump
    structure)
  • Multiple ionisation mechanism for argon is more
    complex
  • most likely combined sequential and
    nonsequential processes
  • enhanced double-hump structure for ultrashort
    pulses
  • indicates importance of core excitations

29
Molecular fragmentation
Confusion reigns when Sir James Dwighton is
murdered... Luckily, his broken clock tells the
tale -- or does it?
What do broken (Coulomb-exploded) molecular
clocks tell us? Does confusion reign also here?
30
Hydrogen molecular potential curves in a strong
laser field
Fragmentation channels
Single ionisation (SI) H2 ? H2 e-
2ppu
H H
Dissociation H2 ? H H0
H H(2p)
  • 1- and 2-photon net absorption
  • recollision - excitation

2psu
H H(1s)
Double ionisation (Coulomb explosion, CE) H2 ?
H H e-
1w
Dressed states
2w
1ssg
3w
H2
  • Sequential (field) double ionisation (SDI)
  • enhanced _at_ R 5 10 a.u. (CREI)

H(1s) H(1s)
  • Recollision
  • - e,2e

H2
- excitation with subsequent field ionisation
31
H2 (D2) as a molecular clock
Principle of a molecular clock based on the
propagation of electronic (recollision) and
nuclear wavepacktes
H. Niikura et al. Nature 417 (2002) 917, 421
(2003) 826
But
works only if the fragmentation path can be
identified
Recent progress
A.S. Alnaser et al. PRL 91 (2003) 163002
Experiment coincident detection of emitted
protons
Theory comprehensive model including
recollision-excitation and ionisation
X.M. Tong, Z.X. Zhao and C.D. Lin PRL 91 (2003)
233203 PRA 68 (2003) 043412
? recollision-excitation is the dominating
mechanism for both dissociation and double
ionisation channels producing high-energy
fragments
32
From short to ultrashort pulses non-coincident
spectra
H2
Dissociation
2 w
1 w
33
From short to ultrashort pulses coincident
spectra
23 fs
Due to
momentum conservation true
coincidence events lie near the P1 - P2
diagonal!
34
6 fs
-20 0
20 40
40 20 0 -20 -40
Sequential ionisation?
P2 a.u.
counts (log scale)
P1 a.u.
35
Molecular fragmentation Conclusions
  • Dynamics of the H2 fragmentation depends
    drastically
  • on the pulse duration
  • Charge-resonant enhanced ionisation (CREI) is
    suppressed for 6 fs
  • Coincidence measurements provide a method to
    distinguish
  • dissociation and double ionisation
    contributions within the
  • same energy range

36
Open questions and outlook
  • Single ionisation
  • More detailed measurements with well-controlled
    few-cycle pulses
  • Other targets, broader range of ?, molecules,
    atomic hydrogen
  • Ultrashort pulses absolute phase effects
  • Multiple ionisation
  • Towards higher and lower intensities (transition
    to sequential regime /
  • threshold effects fpr recollision
  • More on correlated electron dynamics
  • Ultrashort pulses absolute phase effects
  • Molecular fragmentation
  • Origin of low-energy Coulomb explosion peaks
  • dependence on temporal pulse shape
  • Branching ratios for different fragmentation
    channels
  • Electron dynamics breakdown of
    Born-Oppenheimer approximation?

37
Acknowledgment
Claus Dieter Schröter
Robert Moshammer (Head of the group)
Artem Rudenko
Karl Zrost
Vitor Luiz Bastos de Jesus
Write a Comment
User Comments (0)
About PowerShow.com