Title: Solar Neutrino Observations at
1Solar Neutrino Observations at the Sudbury
Neutrino Observatory (SNO)
Alan Poon Institute for Nuclear and Particle
Astrophysics Lawrence Berkeley National Laboratory
for the SNO Collaboration
2Outline
- Introduction the Solar Neutrino Problem (SNP)
- Results from the Sudbury Neutrino Observatory
- Physics Implications
- Summary
3Solar Neutrino Problem
pp Chain 4p 2e ? 4He 2ne 26.7MeV
4Solar Neutrino Problem
either Solar models are incomplete/incorrect or Ne
utrinos undergo flavor-changing oscillation
In this talk, we will demonstrate that Solar
model prediction of the active 8B n flux is
consistent with experiments AND Neutrinos
change flavors while in transit to the Earth
5Neutrino Oscillation
2 n Survival Prob.
Note May also have resonant flavor conversion
in matter Mikheyev-Smirnov-Wolfenstein (MSW)
effect
6Sudbury Neutrino Observatory
1006 tonnes D2O
17.8m dia. PMT Support Structure 9456 20-cm dia.
PMTs 56 coverage
12.01m dia. acrylic vessel
1700 tonnes of inner shielding H2O
Urylon liner
5300 tonnes of outer shielding H2O
NIM A449, 127 (2000)
7Detecting ? in SNO
- Measurement of ne energy spectrum
- Weak directionality
CC
- Measure total 8B n flux from the sun
- s(ne) s(nm) s(nt)
NC
- Low Statistics
- Sff(ne)0.154 f(nmnt)
- Strong directionality
ES
8Smoking Guns for Flavor Changing Oscillation
Measure
Oscillation to active flavor if
THIS TALK
9What else can NC tell us?
nx d ? n p nx
SNO NC
- ne disappearance and nm/t appearance in one
experiment - Direct measurement of the total active 8B n flux
- No ambiguity in combining results from
experiments with different systematics (e.g.
energy resolution) - Lowest En threshold (2.2 MeV) for real time
experiments - No energy spectral information
SNO CC
10Solar Neutrino Analysis (NCCCES)
- NC and Day-Night Analysis in Pure D2O
- Energy Teff gt 5 MeV
- Fiducial vol. R lt 550 cm
E Threshold
Low E Background
Tgt5 MeV
Tgt5.5 MeV
Tgt6 MeV
Energy ?
8 PMT hits / MeV
11NC Data Analysis
Data
(Similar to high E threshold CC analysis)
Instrumental Bkg Cut Reconstruction
inefficiency Cherenkov likelihood
Low Energy Background Analysis
- Energy response
- Reconstruction
- (vertex)
Energy Cut Fiducial Volume Cut
- Reconstruction
- (vertexdirectional)
Signal Decomposition CC, NC, ES
12Data Reduction
Nov 2, 1999 to May 28, 2001 306.4 live days ?
Day128.5 days, Night177.9 days
c.f. High energy CC paper 240.9 live days, 1169
candidate events
13A neutrino candidate event
Event Reconstruction Vertex, Direction, Energy,
Light Isotropy
PMT Information Positions, Charges, Times
14Data Reduction Cuts
- Remove instrumental background using
- PMT time charge distribution
- Event time correlation
- Veto PMT tag
- Reconstruction information
- Light isotropy arrival timing
Light isotropy measure
Light arrival timing
n signal loss
Residual instrumental bkg. contamination
lt 3 events (95 CL)
15NC Data Analysis
Data
(Similar to high E threshold CC analysis)
Instrumental Bkg Cut Reconstruction
inefficiency Cherenkov likelihood
Low Energy Background Analysis
- Energy response
- Reconstruction
- (vertex)
Energy Cut Fiducial Volume Cut
- Reconstruction
- (vertexdirectional)
Signal Decomposition CC, NC, ES
16Energy Response
- Calibration
- PMT Optics
- Normalized to 16N Eg6.13 MeV
- Check with
- 8Li 13 MeV b
- 252Cf d(n,g), Eg6.25 MeV
- 3H(p,g) 19.8 MeV g
DE/E 1.21 Ds/s 4.5 Linearity 0.23
_at_ Ee19.1 MeV
17Event Reconstruction
Example Angular Resolution (16N far from
source)
Given Hit PMTs positions timing
Determine events (x,y,z) (q,f)
Fiducial volume determination (Ntarget?)
Separation of n signals from background
Tools Triggered g and b sources
18NC Data Analysis
Data
(Similar to high E threshold CC analysis)
Instrumental Bkg Cut Reconstruction
inefficiency Cherenkov likelihood
Low Energy Background Analysis
- Energy response
- Reconstruction
- (vertex)
Energy Cut Fiducial Volume Cut
- Reconstruction
- (vertexdirectional)
Signal Decomposition CC, NC, ES
19Neutron Detection Efficiency
Response vs 252Cf source position
- Calibrate using 252Cf fission source (3.8 n per
fission) - Capture Efficiency
- Total 29.90 1.10
- With energy 14.38 0.53
- threshold
- fiducial volume
- selections
- (Tgt5 MeV, Rlt550 cm)
20NC Data Analysis
Data
(Similar to high E threshold CC analysis)
Instrumental Bkg Cut Reconstruction
inefficiency Cherenkov likelihood
Low Energy Background Analysis
- Energy response
- Reconstruction
- (vertex)
Energy Cut Fiducial Volume Cut
- Reconstruction
- (vertexdirectional)
Signal Decomposition CC, NC, ES
21Low Energy Background (Overview)
- Daughters in U or Th chain
- b decays
- bg decays
Photodisintegration (pd) g d ? n
p Indistinguishable from NC ! Technique ?
Radiochemical assay ? Light isotropy
Cherenkov Tail Cause ? Tail of resolution, or
? Mis-reconstruction Technique ? U/Th calib.
source ? Monte Carlo
Must know U and Th concentration in D2O
22Measuring the U and Th Concentration in Water
- I. Ex-situ (Radiochemical Assays)
- Count daughter product decays 224Ra, 226Ra,
222Rn - II. In-situ (Low energy physics data)
- Statistical separation of 208Tl and 214Bi using
light isotropy -
23LE Background Summary
pd neutron bkg. (counts)
D2O
H2OAV
Atmospheric n
235U spont. fission
2H(a,a)pn
17O(a,n)
Terrestrial reactor n
External neutrons
Total 78 12
For Te? 5 MeV, Rlt550cm
Tail Bkg (counts)
D2O
H2O
AV
PMT
Total
c.f. 2928 n candidates
12 of the number of observed NC neutrons
assuming standard solar model n flux
24NC Data Analysis
Data
(Similar to high E threshold CC analysis)
Instrumental Bkg Cut Reconstruction
inefficiency Cherenkov likelihood
Low Energy Background Analysis
- Energy response
- Reconstruction
- (vertex)
Energy Cut Fiducial Volume Cut
- Reconstruction
- (vertexdirectional)
Signal Decomposition CC, NC, ES
25Extracting the n Signals
Max. Likelihood Fit
- PDFs
- kinetic energy T, event location R3,
- and solar angle correlation cos q?
26Signal Extraction Results
Assume standard 8B n spectrum Null hypothesis
no neutrino flavor mixing
61.9 -60.9
CC 1967.7 events NC 576.5
events ES 263.6 events
49.5 -48.9
26.4 -25.6
27Flux Uncertainties (Shape constrained)
fCC
fNC
fmt
28Solar n Flux Summary
8B from CCSNOESSK (2001)
Constrained CC shape
5.3s
Unconstrained CC shape
Null hypothesis rejected at 5.3s
F(nenmnt)
F(ne)
F(ne)0.15F(nmnt)
STRONG Evidence for ne ? nm and/or nt
29Disappearance and Reappearance
Solar Model predictions are verified in 106
cm-2 s-1
30Day Flux vs Night Flux
Day
Night
- Day cos qzenithgt0 (128.5 days)
- Night cos qzenithlt0 (177.9 days)
- 8B shape constrained extraction
NC
ES
CC
? in units of x106 cm-2 s-1
31Day-Night Uncertainties
The day-night analysis is currently statistics
limited
32Global Solar n Analysis
- Inputs 37Cl, latest Gallex/GNO, new SAGE, SK
1258-day day night spectra - SNO day spectrum (total CCNCESbackground)
- SNO night spectrum (total CCNCESbackground)
- 8B floats free in fit, hep n at 1 SSM
m2gtm1
m1gtm2
Global
SNO Day and Night spectra
33Global n Analysis Fit Results
- SNO CC/NC measurement directly constrains the
survival probability at high energy - forces LOW solution to confront the Ga
experimental results
Experimental results SK2.32x106 cm-2 s-1,
Ga72.04.5 SNU, Cl2.560.23 SNU
34Neutrino Mixing What do we know now?
Atmospheric n
Uai
CHOOZ
Solar n LMA
Present situation Solar ne mix with
35CKM vs MNSP
Contrast between VCKM (quark) and UMNSP (lepton)
B ? Big ssmall
36Present Status Future of SNO
Neutral Current Detectors
The Salt Phase
3He proportional counters n ? 3He ? p ? t
- 2 tonnes of NaCl added to D2O
- Higher n-capture efficiency
- Higher event light output
- Light isotropy differs from e-
- Running since June 2001
- To be deployed in early 2003
- Event-by-event separation of n
37SNO Summary
- Newest SNO results
- ne? nm or nt appearance at 5.3 s
- Total 8B n flux measured for Engt2.2 MeV
- SSM prediction for total active 8B n flux
verified - Day-Night results consistent with MSW hypothesis
- Global fit including the newest SNO results
- LMA highly favored (Dm2 5.0 x 10-5 eV2)
- No dark side and not maximal mixing (m1gtm2,
tan2(q)lt1) - Predictions for Borexino KamLAND
The NC and Day-Night papers (in July 1 issue of
PRL), along with a HOWTO guide on using the SNO
results are available at the official SNO
website http//sno.phy.queensu.ca
38The SNO Collaboration
G. Milton, B. Sur Atomic Energy of Canada Ltd.,
Chalk River Laboratories S. Gil, J. Heise, R.J.
Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I.
Tserkovnyak, C.E. Waltham University of British
Columbia J. Boger, R.L Hahn, J.K. Rowley, M.
Yeh Brookhaven National Laboratory R.C. Allen,
G. Bühler, H.H. Chen University of California,
Irvine  I. Blevis, F. Dalnoki-Veress, D.R.
Grant, C.K. Hargrove, I. Levine, K. McFarlane, C.
Mifflin, V.M. Novikov, M. O'Neill, M. Shatkay,
D. Sinclair, N. Starinsky Carleton
University  T.C. Anderson, P. Jagam, J. Law,
I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N.
Tagg, J.-X. Wang University of Guelph J. Bigu,
J.H.M. Cowan, J. Farine, E.D. Hallman, R.U.
Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S.
Luoma, A. Roberge, E. Saettler, M.H.
Schwendener, H. Seifert, R. Tafirout, C.J.
Virtue Laurentian University  Y.D. Chan, X.
Chen, M.C.P. Isaac, K.T. Lesko, A.D. Marino, E.B.
Norman, C.E. Okada, A.W.P. Poon, S.S.E
Rosendahl, A. Schülke, A.R. Smith, R.G.
Stokstad Lawrence Berkeley National Laboratory
M.G. Boulay, T.J. Bowles, S.J. Brice, M.R.
Dragowsky, M.M. Fowler, A.S. Hamer, A. Hime, G.G.
Miller, R.G. Van de Water, J.B. Wilhelmy, J.M.
Wouters Los Alamos National Laboratory
J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S.
Storey National Research Council of Canada J.C.
Barton, S. Biller, R.A. Black, R.J. Boardman,
M.G. Bowler, J. Cameron, B.T. Cleveland, X. Dai,
G. Doucas, J.A. Dunmore, A.P. Ferarris, H.
Fergani, K. Frame, N. Gagnon, H. Heron, N.A.
Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S.
Majerus, G. McGregor, M. Moorhead, M. Omori, C.J.
Sims, N.W. Tanner, R.K. Taplin, M.Thorman, P.M.
Thornewell, P.T. Trent, N. West, J.R.
Wilson University of Oxford E.W. Beier, D.F.
Cowen, M. Dunford, E.D. Frank, W. Frati, W.J.
Heintzelman, P.T. Keener, J.R. Klein, C.C.M.
Kyba, N. McCauley, D.S. McDonald, M.S. Neubauer,
F.M. Newcomer, S.M. Oser, V.L Rusu, R. Van Berg,
P. Wittich University of Pennsylvania  R.
Kouzes Princeton University E. Bonvin, M. Chen,
E.T.H. Clifford, F.A. Duncan, E.D. Earle, H.C.
Evans, G.T. Ewan, R.J. Ford, K. Graham, A.L.
Hallin, W.B. Handler, P.J. Harvey, J.D. Hepburn,
C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, J.
Maneira, A.B. McDonald, B.A. Moffat, T.J.
Radcliffe, B.C. Robertson, P. Skensved Queens
University D.L. Wark Rutherford Appleton
Laboratory, University of Sussex R.L. Helmer,
A.J. Noble TRIUMF Q.R. Ahmad, M.C. Browne, T.V.
Bullard, G.A. Cox, P.J. Doe, C.A. Duba, S.R.
Elliott, J.A. Formaggio, J.V. Germani, A.A.
Hamian, R. Hazama, K.M. Heeger, K. Kazkaz, J.
Manor, R. Meijer Drees, J.L. Orrell, R.G.H.
Robertson, K.K. Schaffer, M.W.E. Smith, T.D.
Steiger, L.C. Stonehill, J.F. Wilkerson
University of Washington
39(No Transcript)
40Supplementary slides from this point on
41How to solve the Solar Neutrino Problem?
PRL 55, 1534 (1985)
42Recap Te gt 6.75 MeV
Result 1 ne?nm,t
SK ES (1s)
Excludes pure ne?nsterile at 3.1 s
1.6 s
3.3 s
Result 2 Solar model predictions are verified
43Bifurcated Analysis
Bifurcated analysis
- Use a subset of the Pass 0 cuts and the HLC as
two independent cuts - Number of residual instrumental background event
K y1y2fB - K lt 3 events (95 CL)
Pass Cut 1 ac a1fn y1fB Pass Cut 2 ab
a2fn y2fB Pass Cuts 12 a a1a2fn
y1y2fB Total Data S fn fB
aineutrino acceptance for cut i yileakage of
background for cut I fnnumber of neutrino
events fBnumber of background events
44Understanding the Detector Response
Monte Carlo
- Cherenkov production (e-, g)
- Photon propagation and detection
- Neutron transport and capture
- Event Reconstruction
Calibration
45Energy Calibration Uncertainties
Absolute Energy Calibration Uncertainties
Energy Response functions
46Neutron Capture Efficiency
252Cf source data
Measured n capture on d (uniform source) 29.9
1.1
47pd background from D2O, AV, H2O radioactivity
c.f. SSM 2 detected n d-1
The photodisintegration background is small
compared to the SSM expectation
48U and Th in/on the Acrylic Vessel
- Original Target (2 ppt) 60 mg Th or U
- Bulk acrylic assayed (NAA)
- Dust concentration on inner and outer surfaces
measured prior to filling - Hot spot (Berkeley Blob) found in Cherenkov
data
Z vs X projection
c.f. SSM 2 detected n d-1
49Cherenkov Tail D2O
- Monte Carlo of detector response well
calibrated in the D2O region - ? Determine Cherenkov tail background due to
D2O radioactivity by Monte Carlo, using the U and
Th concentration obtained above. - MC predictions cross checked with a Th
calibration source
Tgt5 MeV, Rlt550cm
50Cherenkov Tail
- Determined from U/Th source calibration and
Monte Carlo - Consistent with expectation based on measured U
and Th concentration
For Te? 5 MeV, Rlt550cm
Tail Bkg (counts)
D2O
H2O
AV
PMT
Total
c.f. 2928 n candidates
51Ae vs Atotal
- Signal Extraction in fCC, fNC, fES
- Signal Extraction in fe, fTotal
- fTotal fe fm ft
- Signal Extraction in fe, fTotal Atotal0
52Does the sun shine brighter at night?
Tgt5 MeV Rlt550 cm
- Data divided into two sets
- (to test statistical bias)
- Sub-divide data into two zenith angle bins
- Day cos qzgt0 (128.5 days)
- Night cos qzlt0 (177.9 days)
- Extract fCC, fNC, and fES in these 2 bins
- (8B shape constrained fit)
Night-Day
Day 9.230.27 events d-1 Night 9.790.24 events
d-1 Signal and background included
53Systematic Uncertainties (D-N )
Shape constrained
The D-N analysis is currently statistics limited
54Cosmological Implications
- 1. SNO CHOOZ m12-m22 lt
10-3 eV2 - 2. Super-Kamiokande m22-m32
2.5?10-3 eV2 - 3. 3H b decay (Mainz exp.) Ue12m12
Ue22m22 lt (2.2)2 eV2
Sum of neutrino masses ?mn 0.05 lt ? mn lt 6.6
eV Limit on closure density ? 0.001 lt ?? lt 0.14
55Salt Phase
Detector is in GOOD shape
Injection Ended
Salt Injected on May 28, 2001
24Na Background
Injection began
t1/215 hrs
Counts
The NaCl brine in the underground buffer tank was
activated by neutrons from the rock wall. We
observed the decay of 24Na after the brine is
injected in the SNO detector.
-200
-100
0
100
200
Time Since Salt Injection (hrs)
56n in the Standard Electroweak Model (I)
Quark Sector
Lepton Sector
57n After April 2002
Accelerator n MiniBoone
Atmospheric n MINOS Off-axis expt.
Solar n SNO KamLAND Borexino
Outstanding Issues Precision determination of
parameters, 3 family mixing Absolute n mass
scale Sterile neutrinos? Modifications to
Standard Model Origins of n mass
H. Murayama
Hitoshi Murayama
58Prediction for KamLAND
Global fit LMA?Dm25x10-5 eV2
59LMA Solution?
- LARGE MIXING SCENARIO?
- KamLAND (Kamioka, Japan)
- reactor n _at_ right baseline for probing the
currently favored LMA region
1 kt liquid scintillator as target
2x coincidence
Alan Poon, SLAC Summer Institute Topical
Conference (2002)
60Reactor n physics at KamLAND
- No oscillation scenario, expect
- 150 events in 3 months
- If LMA, expect
- 110 events in 3 months
- 3s statistical significance in 3 months
Data taking began on Jan. 22, 2002
Alan Poon, SLAC Summer Institute Topical
Conference (2002)
61LOW solution?
- LOW large D-N asymmetry in 7Be flux
- Borexino (Gran Sasso, Italy)
Bahcall et al. hep-ph/0204314
300t liquid scintillator as target. Measure the
7Be n flux by elastic scattering n e? n e
Very stringent radioactive background requirements
Data-taking will begin in 2003
Borexino prototype (Counting Test Facility)
Alan Poon, SLAC Summer Institute Topical
Conference (2002)
62Low E solar n experiment
- Goals
- Precision measurement of q12, test unitarity of
MNSP matrix - Constrain on active-sterile n mixing
- Test of solar models
Alan Poon, SLAC Summer Institute Topical
Conference (2002)
63Future solar n experiments
Nakahata, LowNu2002
Alan Poon, SLAC Summer Institute Topical
Conference (2002)
64Future Experiments
Alan Poon, SLAC Summer Institute Topical
Conference (2002)