Special Topics on Wireless Adhoc Networks - PowerPoint PPT Presentation

1 / 79
About This Presentation
Title:

Special Topics on Wireless Adhoc Networks

Description:

License free operation. Multiple networks should co-exist. Univ. of Tehran. Computer Network ... 802.11 is also known as WiFi = 'Wireless Fidelity' ... – PowerPoint PPT presentation

Number of Views:48
Avg rating:3.0/5.0
Slides: 80
Provided by: larrype2
Category:

less

Transcript and Presenter's Notes

Title: Special Topics on Wireless Adhoc Networks


1
Special Topics on Wireless Ad-hoc Networks
Lecture 6 Wireless Local Area Networks (WLANs)
  • University of Tehran
  • Dept. of EE and Computer Engineering
  • By
  • Dr. Nasser Yazdani

2
Covered topic
  • How to build a small wireless local area network?
  • Different current wireless technologies
  • References
  • Chapter 3 of the book
  • Design alternative for Wireless local area
    networks,
  • Many other sources for 802.11

3
Outlines
  • Some basic issues
  • Wireless area network standards
  • 802.11 standard
  • 802.11 management

4
Ideal Wireless Area network?
  • Wish List
  • High speed (Efficiency)
  • Low cost
  • No use/minimal use of the mobile equipment
    battery
  • Can work in the presence of other WLANs
    (Heterogeneity)
  • Easy to install and use
  • Etc

5
Wireless LAN Design Goals
  • Wireless LAN Design Goals
  • Portable product Different countries have
    different regulations concerning RF band usage.
  • Low power consumption
  • License free operation
  • Multiple networks should co-exist

6
Wireless LAN Design Alternatives
  • Design Choices
  • Physical Layer diffused Infrared (IR) or Radio
    Frequency (RF)?
  • Radio Technology Direct-Sequence or
    Frequency-Hopping?
  • Which frequency range to use?
  • Which MAC protocol to use.
  • Peer-Peer architecture or Base-Station approach?

Univ. of Tehran
Computer Network
6
7
Physical Layer Alternatives
  • IR
  • Simple circuitry, cost-effective, no regulatory
    constraints, no Rayleigh fading (waves are
    small), also nice for micro-cellular networks...
    (multiple cells can exist in a room providing
    more bandwidth)
  • RF
  • more complicated circuitry, regulatory
    constraints (2.4 GHz Industrial Scientific
    Medical, ISM, bands) in the U.S.

8
Physical Layer Alternatives
9
Spread spectrum technology
  • Problem of radio transmission frequency
    dependent fading can wipe out narrow band signals
    for duration of the interference
  • Solution spread the narrow band signal into a
    broad band signal using a special code
  • Side effects
  • coexistence of several signals without dynamic
    coordination
  • tap-proof
  • Alternatives Direct Sequence, Frequency Hopping

signal
interference
spread signal
power
power
spread interference
detection at receiver
f
f
10
DSSS (Direct Sequence Spread Spectrum)
  • XOR of the signal with pseudo-random number
    (chipping sequence)
  • generate a signal with a wider range of
    frequency spread spectrum

11
FHSS (Frequency Hopping Spread Spectrum)
  • Discrete changes of carrier frequency
  • sequence of frequency changes determined via
    pseudo random number sequence
  • Two versions
  • Fast Hopping several frequencies per user bit
  • Slow Hopping several user bits per frequency
  • Advantages
  • frequency selective fading and interference
    limited to short period
  • simple implementation
  • uses only small portion of spectrum at any time

12
FHSS Example
13
Comparison between Slow Hopping and Fast Hopping
  • Slow hopping
  • Pros cheaper
  • Cons less immune to narrowband interference
  • Fast hopping
  • Pros more immune to narrowband interference
  • Cons tight synchronization ? increased complexity

14
Radio Technology
  • Spread Spectrum Technologies
  • Frequency Hopping The sender keeps changing the
    carrier wave frequency at which its sending its
    data. Receiver must be in synch with transmitter,
    and know the ordering of frequencies.
  • Direct-Sequence The receiver listens to a set of
    frequencies at the same time. The subset of
    frequencies that actually contain data from the
    sender is determined by spreading code, which
    both the sender and receiver must know. This
    subset of frequencies changes during
    transmission.
  • Non-Spread Spectrum requires licensing

15
Frequency Hopping versus Direct Sequence
  • DS advantages
  • Lower cost
  • FH advantages
  • Higher capacity
  • Interference avoidance capability If some
    frequency has interference on it, simply don't
    hop there.
  • Multiple networks can co-exist Just use a
    different frequency hopping pattern.

16
Wireless Standards
17
Distance vs. Data Rate
18
Mobility vs. Data Rate
Univ. of Tehran
Computer Network
18
19
LAN Industry
  • WANs are offered as service
  • Cost of infrastructure
  • Coverage area
  • LANs are sold as end products
  • You own, no service charge
  • Analogy with PSTN/PBX
  • WLAN vs. WAN Cellular Networks
  • Data rate (2 Mbps vs. 54 Mbps)
  • Frequency band regulation (Licensing)
  • Method of data delivery (Service vs. own)

20
LAN standard
21
Early Experiences
  • IBM Switzerland,Late 1970
  • Factories and manufacturing floors
  • Diffused IR technology
  • Could not get 1 Mbps
  • HP Labs, Palo Alto, 1980
  • 100 Kbps DSSS around 900 Mhz
  • CSMA as MAC
  • Experimental licensing from FCC
  • Frequency administration was problematic, thus
    abandoned
  • Motorola, 1985
  • 1.73 GHz
  • Abandoned after FCC difficulties

22
WiFi
  • Almost all wireless LANs now are IEEE 802.11
    based
  • Competing technologies, e.g., HiperLAN cant
    compete on volume and cost
  • 802.11 is also known as WiFi Wireless
    Fidelity
  • Fidelity Compatibility between wireless
    equipment from different manufacturers
  • WiFi Alliance is a non-profit organization that
    does
  • the compatibility testing (WiFi.org)

23
Architectures
  • Distributed wireless Networks also called Ad-hoc
    networks
  • Centralized wireless Networks also called last
    hop networks. They are extension to wired
    networks.

24
Centralized Wlan
Ad Hoc
Laptop
Laptop
Server
DS
Pager
Laptop
PDA
Laptop
25
Base-Station Approach Advantages over Peer-Peer
  • No hidden terminal base station hears all mobile
    terminals, are relays their information to ever
    mobile terminal in cell.
  • Higher transmission range
  • Easy expansion
  • Better approach to security
  • Problem?
  • Point of failure,
  • Feasibility?

26
Access Point Functions
  • Access point has three components
  • Wireless LAN interface to communicate with nodes
    in its service area
  • Wireline interface card to connect to the
    backbone network
  • MAC layer bridge to filter traffic between
    sub-networks. This function is essential to use
    the radio links efficiently

27
Medium Access Control
  • Wireless channel is a shared medium
  • Need access control mechanism to avoid
    interference
  • MAC protocol design has been an active area of
    research for many years. See Survey.

28
MAC A Simple Classification
Wireless MAC
Centralized
Distributed
On Demand MACs, Polling
Guaranteed or controlled access
Random access
Our focus
SDMA, FDMA, TDMA, Polling
29
Wireless LAN Architecture, Cont
Logical Link Control Layer
MAC Layer Consist of two sub layer, physical
Layer and physical convergence layer
  • Physical convergence layer, shields LLC from the
    specifics of the physical medium. Together with
    LLC it constitutes equivalent of Link Layer of OSI

30
Power Management
  • Battery life of mobile computers/PDAs are very
    short. Need to save
  • The additional usage for wireless should be
    minimal
  • Wireless stations have three states
  • Sleep
  • Awake
  • Transmit

31
Power Management, Cont
  • AP knows the power management of each node
  • AP buffers packets to the sleeping nodes
  • AP send Traffic Delivery Information Message
    (TDIM) that contains the list of nodes that will
    receive data in that frame, how much data and
    when?
  • The node is awake only when it is sending data,
    receiving data or listening to TDIM.

32
802.11 Features
  • Power management NICs to switch to lower-power
    standby modes periodically when not transmitting,
    reducing the drain on the battery. Put to sleep,
    etc.
  • Bandwidth To compress data
  • Security
  • Addressing destination address does not always
    correspond to location.

33
IEEE 802.11 Topology
  • Independent basic service set (IBSS) networks
    (Ad-hoc)
  • Basic service set (BSS), associated node with an
    AP
  • Extended service set (ESS) BSS networks
  • Distribution system (DS) as an element that
    interconnects BSSs within the ESS via APs.

34
Starting an IBSS
  • One station is configured to be initiating
    station, and is given a service set ID (SSID)
  • Starter sends beacons
  • Other stations in the IBSS will search the medium
    for a service set with SSID that matches their
    desired SSID and act on the beacons and obtain
    the information needed to communicate
  • There can be more stations configured as
    starter.

35
ESS topology
  • connectivity between multiple BSSs, They use a
    common DS

36
Starting an ESS
  • The infrastructure network is identified by its
    extended service set ID (ESSID)
  • All APs will have been set according to this
    ESSID
  • On power up, stations will issue probe requests
    and will locate the AP that they will associate
    with.

37
802.11 Logical Architecture
  • PLCP Physical Layer Convergence Procedure
  • PMD Physical Medium Dependent
  • MAC provides asynchronous, connectionless service
  • Single MAC and one of multiple PHYs like DSSS,
    OFDM, IR
  • and FHSS.

38
802.11 MAC Frame Format
Bytes

342346
32
6
6
2
6
6
4
2
2
6
Bytes
Encrypted to WEP
Bits
2
1
2
4
1
1
39
802.11 MAC Frame Format
  • Address Fields contains
  • Source address
  • Destination address
  • AP address
  • Transmitting station address
  • DS Distribution System
  • User Data, up to 2304 bytes long

40
Special Frames ACK, RTS, CTS
bytes
2
2
6
4
Frame Control
Duration
Receiver Address
CRC
  • Acknowledgement
  • Request To Send
  • Clear To Send

ACK
bytes
2
2
6
6
4
Frame Control
Duration
Receiver Address
Transmitter Address
CRC
RTS
bytes
2
2
6
4
Frame Control
Duration
Receiver Address
CRC
CTS
41
IEEE 802.11 LLC Layer
  • Provides three type of service for exchanging
    data between (mobile) devices connected to the
    same LAN
  • Acknowledged connectionless
  • Un-acknowledged connectionless, useful for
    broadcasting or multicasting.
  • Connection oriented
  • Higher layers expect error free transmission

42
IEEE 802.11 LLC Layer, Cont..
  • Each SAP (Service Access Point) address is 7
    bits. One bit is added to it to indicate whether
    it is order or response.
  • Control has three values
  • Information, carry user data
  • Supervisory, for error control and flow control
  • Unnumbered, other type of control packet

43
IEEE 802.11 LLC lt-gt MAC Primitives
  • Four types of primitives are exchanged between
    LLC and MAC Layer
  • Request order to perform a function
  • Confirm response to Request
  • Indication inform an event
  • Response inform completion of process began by
    Indication

44
Reception of packets
  • AP Buffer traffic to sleeping nodes
  • Sleeping nodes wake up to listen to TIM (Traffic
    Indication Map) in the Beacon
  • AP send a DTIM (Delivery TIM) followed by the
    data for that station.
  • Beacon contains, time stamp, beacon interval,
    DTIM period, DTIM count, sync info, TIM broadcast
    indicator

45
Frame type and subtypes
  • Three type of frames
  • Management
  • Control
  • Asynchronous data
  • Each type has subtypes
  • Control
  • RTS
  • CTS
  • ACK

46
Frame type and subtypes, Cont..
  • Management
  • Association request/ response
  • Re-association request/ response transfer from
    AP to another.
  • Probe request/ response
  • privacy request/ response encrypting content
  • Authentication to establish identity
  • Beacon (Time stamp, beacon interval, channels
    sync info, etc.)

47
Frame type and subtypes, Cont..
  • Management
  • TIM (Traffic Indication Map) indicates traffic to
    a dozing node
  • dissociation

48
802.11 Management Operations
  • Scanning
  • Association/Reassociation
  • Time synchronization
  • Power management

49
Scanning in 802.11
  • Goal find networks in the area
  • Passive scanning
  • Not require transmission
  • Move to each channel, and listen for Beacon
    frames
  • Active scanning
  • Require transmission
  • Move to each channel, and send Probe Request
    frames to solicit Probe Responses from a network

50
Association in 802.11
1 Association request
2 Association response
AP
3 Data traffic
Client
51
Reassociation in 802.11
1 Reassociation request
New AP
3 Reassociation response
5 Send buffered frames
2 verifypreviousassociation
Client
6 Data traffic
Old AP
4 send buffered frames
52
Time Synchronization in 802.11
  • Timing synchronization function (TSF)
  • AP controls timing in infrastructure networks
  • All stations maintain a local timer
  • TSF keeps timer from all stations in sync
  • Periodic Beacons convey timing
  • Beacons are sent at well known intervals
  • Timestamp from Beacons used to calibrate local
    clocks
  • Local TSF timer mitigates loss of Beacons

53
Power Management in 802.11
  • A station is in one of the three states
  • Transmitter on
  • Receiver on
  • Both transmitter and receiver off (dozing)
  • AP buffers packets for dozing stations
  • AP announces which stations have frames buffered
    in its Beacon frames
  • Dozing stations wake up to listen to the beacons
  • If there is data buffered for it, it sends a poll
    frame to get the buffered data

54
Authentication
  • Three levels of authentication
  • Open AP does not challenge the identity of the
    node.
  • Password upon association, the AP demands a
    password from the node.
  • Public Key Each node has a public key. Upon
    association, the AP sends an encrypted message
    using the nodes public key. The node needs to
    respond correctly using it private key.

55
Inter Frame Spacing
  • SIFS Short inter frame space dependent on PHY
  • PIFS point coordination function (PCF) inter
    frame space SIFS slot time
  • DIFS distributed coordination function (DCF)
    inter frame space PIFS slot time
  • The back-off timer is expressed in terms of
    number of time slots.

56
802.11 Frame Priorities
  • Short interframe space (SIFS)
  • For highest priority frames (e.g., RTS/CTS, ACK)
  • PCF interframe space (PIFS)
  • Used by PCF during contention free operation
  • DCF interframe space (DIFS)
  • Minimum medium idle time for contention-based
    services

DIFS
PIFS
contentwindow
Frame transmission
Busy
SIFS
Time
57
SIFS/DIFS
  • SIFS makes RTS/CTS/Data/ACK atomic
  • Example Slot Time 1, CW 5, DIFS3, PIFS2,
    SIFS1,

58
Priorities in 802.11
  • CTS and ACK have priority over RTS
  • After channel becomes idle
  • If a node wants to send CTS/ACK, it transmits
    SIFS duration after channel goes idle
  • If a node wants to send RTS, it waits for DIFS gt
    SIFS

59
SIFS and DIFS
DATA1
ACK1
backoff
RTS
DIFS
SIFS
SIFS
60
Energy Conservation
  • Since many mobile hosts are operated by
    batteries, MAC protocols which conserve energy
    are of interest
  • Two approaches to reduce energy consumption
  • Power save Turn off wireless interface when
    desirable
  • Power control Reduce transmit power

61
Power Control with 802.11
  • Transmit RTS/CTS/DATA/ACK at least power level
    needed to communicate with the receiver
  • A/B do not receive RTS/CTS from C/D. Also do not
    sense Ds data transmission
  • Bs transmission to A at high power interferes
    with reception of ACK at C

B
C
D
A
62
A Plausible Solution
  • RTS/CTS at highest power, and DATA/ACK at
    smallest necessary power level
  • A cannot sense Cs data transmission, and may
    transmit DATA to some other host
  • This DATA will interfere at C
  • This situation unlikely if DATA transmitted at
    highest power level
  • Interference range sensing range

Data sensed
B
C
D
A
Data
RTS
Ack
Interference range
63
  • Transmitting RTS at the highest power level also
    reduces spatial reuse
  • Nodes receiving RTS/CTS have to defer
    transmissions

64
Bridge Functions
  • Speed conversion between different devices,
    results in buffering.
  • Frame format adaptation between different
    incompatible LANs
  • Adding or deleting fields in the frame to convert
    between different LAN standards

65
02.11 Activities IEEE
  • 802.11c Bridge Operation (Completed. Added to
    IEEE 802.1D)
  • 802.11d Global Harmonization (PHYs for other
    countries. Published as IEEE Std 802.11d-2001)
  • 802.11e Quality of Service. IEEE Std
    802.11e-2005
  • 802.11f Inter-Access Point Protocol (Published
    as IEEE Std Std 802.11F-2003)
  • 802.11h Dynamic Frequency Selection and transmit
    power control to satisfy 5GHz band operation in
    Europe. Published as IEEE Std 802.11h-2003
  • 802.11i MAC Enhancements for Enhanced Security.
    Published as IEEE Std 802.11i-2004
  • 802.11j 4.9-5 GHz operation in Japan. IEEE Std
    802.11j-2004
  • 802.11k Radio Resource Measurement interface to
    higher layers. Active.

66
02.11 Activities IEEE
  • 802.11m Maintenance. Correct editorial and
    technical issues in 802.11a/b/d/g/h. Active.
  • 802.11n Enhancements for higher throughput (100
    Mbps). Active.
  • 802.11p Inter-vehicle and vehicle-road side
    communication at 5.8GHz. Active.
  • 802.11r Fast Roaming. Started July 2003.
    Active.
  • 802.11s ESS Mesh Networks. Active.
  • 802.11T Wireless Performance Metrics. Active.
  • 802.11u Inter-working with External Networks.
    Active.
  • 802.11v Wireless Network Management enhancements
    for interface to upper layers. Extension to
    80211.k. Active.
  • Study Group ADS Management frame security.
    Active
  • Standing Committee Wireless Next Generation WNG
    Globalization jointly w ETSI-BRAN and MMAC.
    Active.

67
802.11n
  • Trend HDTV and flat screens are taking off Media
    Center Extenders from Linksys and other vendors
  • Application HDTV and streaming video (over
    longer distances than permitted by 802.15.3
    WPANs)
  • 11n Next Generation of 802.11
  • At least 100 Mbps at MAC user layer ? 200 Mbps
    at PHY ? 4x to 5x faster than 11a/g
  • (802.11a/g have 54 Mbps over the air and 25 Mbps
    to user)
  • Pre-11n products already available
  • Task Group n (TGn) setup Sept 2003
  • Expected Completion March 2007

68
802.11n
  • Uses multiple input multiple output antenna
    (MIMO)
  • Data rate and range are enhanced by using spatial
  • multiplexing (N antenna pairs) plus antenna
    diversity occupies one WLAN channel, and in
    compliance with 802.11
  • Backwards compatible with 802.11 a,b,g
  • One access point supports both standard WLAN and
    MIMO devices

69
HIPERLAN
  • 1995 ETSI technical group RES 10 (Radio Equipment
    and Systems) developed HIPERLAN/1 wireless LAN
    standards using 5 channels in 5.15-5.3 GHz
    frequency range
  • Technical group BRAN (Broadband Radio Access
    Network) is standardizing HIPERLAN/2 for wireless
    ATM
  • ETSI URL for Hiperlan information
    http//www.etsi.org/frameset/home.htm?
    /technicalactiv/Hiperlan/hiperlan2.htm

Univ. of Tehran
Computer Network
69
70
HIPERLAN Characteristics
  • HIPERLANs with same radio frequencies might
    overlap
  • Stations have unique node identifiers (NID)
  • Stations belonging to same HIPERLAN share a
    common HIPERLAN identifier (HID)
  • Stations of different HIPERLANs using same
    frequencies cause interference and reduce data
    transmission capacity of each HIPERLAN
  • Packets with different HIDs are rejected to avoid
    confusion of data

Univ. of Tehran
Computer Network
70
71
HIPERLAN Protocol Layers
  • Data link layer logical link control (LLC) sub
    layer MAC sub layer channel access control
    (CAC) sub layer

network
LLC
data link
MAC
physical
CAC
Univ. of Tehran
Computer Network
71
72
HIPERLAN Protocol Layers, Cont..
  • MAC sub layer
  • Keeps track of HIPERLAN addresses (HID NID) in
    overlapping HIPERLANs
  • Provides lookup service between network names and
    HIDs
  • Converts IEEE-style MAC addresses to HIPERLAN
    addresses
  • Provides encryption of data for security

Univ. of Tehran
Computer Network
72
73
HIPERLAN Protocol Layers, Cont..
  • MAC sub layer
  • Provides multi hop routing certain stations
    can perform store-and-forwarding of frames
  • Recognizes user priority indication (for
    time-sensitive frames)

Univ. of Tehran
Computer Network
73
74
HIPERLAN Protocol Layers, Cont..
  • CAC sub layer
  • Non-preemptive priority multiple access (NPMA)
    gives high priority traffic preference over low
    priority
  • Stations gain access to channel through channel
    access cycles consisting of 3 phases

Univ. of Tehran
Computer Network
74
75
HIPERLAN CAC Protocol
  • CAC sub layer

Cycle
Prioritization Phase
Transmission Phase
Contention Phase
1
2
3
4
Data
ACK
AP
1
2
3
4
5
Time
Univ. of Tehran
Computer Network
75
76
HIPERLAN Protocol Layers, Cont
  • CAC is designed to give each station (of same
    priority) equal chance to access the channel
  • First stations with highest priority data are
    chosen. The rest will back off until all higher
    priority data is transmitted.
  • Stations with the same priority level data,
    compete according to a given rule to choose
    survivors
  • Survivors wait a random number of time slots and
    then listen to see if the channel is idle

Univ. of Tehran
Computer Network
76
77
HIPERLAN Protocol Layers, Cont
  • If the channel is idle then it starts
    transmitting.
  • Those who could not transmit wait until next
    period

Univ. of Tehran
Computer Network
77
78
HIPERLAN/2
  • To support QoS, Handoff and integrate WLAN with
    next generation Cellular sys.
  • Supporting IP ATM at 54Mbps
  • Use TDMA as MAC
  • DLC (Data Link Control) layer constitutes a
    logical link Between AP and MT to ensure a
    connection oriented Communication.

Univ. of Tehran
Computer Network
78
79
Related Standards Activities
  • IEEE 802.11
  • http//grouper.ieee.org/groups/802/11/
  • Hiperlan/2
  • http//www.etsi.org/technicalactiv/hiperlan2.htm
  • IETF manet (Mobile Ad-hoc Networks) working group
  • http//www.ietf.org/html.charters/manet-charter.ht
    ml
Write a Comment
User Comments (0)
About PowerShow.com