Title: A1260212413IMKad
1Future Genomics
Nadav Ahituv UCSF
2In the midst of revolutionary times
3(No Transcript)
4OUTLINE
1. The human genome
2. Novel sequencing technologies
3. New genomic terrains to be uncovered
4. Advantages of individual genomes
5. Challenges risks of individual genomes
5(No Transcript)
6Why do we need more DNA?
1. Splicing
7Introns, exons splicing in eukaryotic genes
8Why do we need more DNA?
1. Splicing
2. Regulation
9Regulatory Elements Promoter, Enhancer,
Silencer, Insulator
Insulator
Promoter
Gene A
Enhancers
10Why do we need more DNA?
1. Splicing
2. Gene Regulation
3. We have a lot of viruses repeats in our
genome
11Genes make up ONLY 2 of our genome
2 Coding
45 Viruses Repeats
98 Noncoding
12Why do we need more DNA?
1. Splicing
2. Gene Regulation
3. We have a lot of viruses repeats in our
genome
4. We are more complex
13Pine Tree 12
60,000 18 billion
14OUTLINE
1. The human genome 3.1 billion 3.1 Giga base
(Gb)
2. Novel sequencing technologies
3. New genomic terrains to be uncovered
4. Advantages of individual genomes
5. Challenges Risks of individual genomes
15How Genomes are Sequenced
- Fractionate the DNA into RANDOM small pieces and
sequence all of them.
7-13 X coverage
16Sanger Sequencing
17Pyrosequencing
READ
WASH
ADD NEW NUCLEOTIDE
18Illumina Genome Analyzer (Solexa)
Total sequence 10Gb
Run time 5 days Average read length
30bp Price per run 3,000
19454 (Roche)
Total sequence 1Gb
Run time 5hr Average read length
500bp Price per run 5,000
20In the midst of revolutionary times
213rd generation sequencing platforms
Complete Genomics
Pacific Biosciences
Oxford Nanopore Technologies
Helicos Biosciences
22OUTLINE
1. The human genome
2. Novel sequencing technologies
3. New genomic terrains to be uncovered
4. Advantages of individual genomes
5. Challenges risks of individual genomes
231. Gene regulation
2. Histone code
24The Human Genome Status
25Genes make up ONLY 2 of our genome
2 Coding
98 Noncoding
26AGGAAGGGAAAGCGCAAGAGAGAGCGCACACGCACACACCCGCCGCGCGC
ACTCGCGCACGGACCCGCACGGGGACAGCTCGGAAGTCATCAGTTCCATG
GGCGAATGCTGCTGCTGGCGAGATGTCTGCTGCTAGTCCTCGTCTCCTCG
CTGCGGTATGCTCGGGACTGGCGTGCGGACCGGGCAGGGGGTTCGGGAAG
AGGAGGCACCCCAAAAAGCTGACCCCTTTAGCCTACAAGCAGTTTATCCC
CAATGTGGCCGAGAAGACCCTAGGCGCCAGCGGAAGGTATGAAGGGAAGA
TCTCCAGAAACTCCGAGCGATTTAAGGAACTCACCCCCAATTACAACCCC
GACATCATATTTAAGGATGAAGAAAACACCGGAGCGGACAGGCTGATGAC
TCAGTAGGAACCCAGCGCCGGGGCGTGGAATGTGTGGCTTTCCAGGGGGT
TACGAGAAGCCGAACACTTCCAGACTTAACTCTGTTTGCTCTTCGGGCAG
ATGAAGGTGATTTCACCCGCTCCTTCCCCACCCACCTGCCCGCCCCCCAT
TCTTCCTCTTCCTGGAGGAGAATGGAGGTCAAGGGTCCAGCTGGAGAAGT
TAGGGTGTGGTGGGGGTGAGGACGGTAACAGACGTGGTTCATTATGGCCT
GATTTGATGAGTCTTGCTACAATGGCCTTCCCCATCCTACCTCTGCCTGG
CTTGTAACTTGGGGAGACCTTCACTTTGGGGGCGTCGGCCCTTTCCAGTC
AGGAGTGGAAATGGAAGGAGAGGCTGGGAATCCCCCTCCCACAAACATGA
AGTGGTCTCCTGGTACTGTACGAACGAACGAACGTAGCCTTGGGCTTGGA
GCTCAGAGCCCCCACGTTTCCCGTTGCCTCTGTGGTTTTCTTTCCACCAC
TACCCCCACCCTGCACCTCCCCACCAAAGAATTCTCAACTGGAAAAGCCA
GGAGGCGGTTCTGACAAAAGGCAGGGGCTCCAGGGGAGACTCCCCCGTCC
CTGGGTGGCTGGCTGTATCGCAGAGCTGGCTTTGCGATTGCGTGTCCGCA
ATTGTGCCCATCAGAGTGTGAATGTATTGATATTTCTTTAAGGATGCTCT
TTCGTTCTTCCAAGCCCGAGGTACCTTAGGGGAGGGACTTAGAACTTATT
GGCATTGCATCACTTTAGTTTTCAACCTGCTTGCATAAGAATTAAGAGCG
AATAAATATTAGTGTGGGGGGAGGGGAAGCTAAGCAAAATATGAATTCCT
CTCTCTCTCCCCACCTCCTTTGAGATTTCTGAGCTGCCAATCTCCCAGCC
AATTCTAGACTTTCTGAAACTCCATGCACGTATAACTGAAGCCAGAAATG
GGTTTCCTTGCAAATATAGGTCAACATCCTTTTTATTGCCCTATTAAAAT
ATTCAAGTCCTACCTTTAGGGCTAGGTGCGTACAGCGGCTGATGGAGTGG
CGCTGGTGGGGCGCAAGTGCAGGGGGAGGGTACTGACGGCAGAGAGAGAG
GAGCTACCTCCGTGCCGCCCTGCTTCCCGACCCGATTCCCAGGCTTGCTT
GAGGCCGAGAAAGGCGAGGGGCAGGCAAGGTAGCCTGCTCCAGCTGTCGG
AAGGGAGAGGAATGGGAAATGGTCCTGATTTCCTTGCTCTCCCTCATCTG
CTCCCGACCACCTTAAATCTGGACCGCGAGTGTGGACGCGCGCGCCAGTG
CCAGACAGCAGCGCGATCCACAATTAACTCTGCACGGGCCATGGGGTGCC
CGTTGCGTGCAGCTGGCTGGAGGGAGTTCTCCGGCTAGCCCGAGGCGCCC
ATCCTCTCGTCACCCTCACTCCCCGCGGAGGAGGGGCCTTGCCAGGGTCC
CTCGGAACCCGAGAGGAGGGAGGCACTGCGGAGAGAGCGGCGGGGGCGTG
GATACCCGAGGTCCCAGAGCCAGAGTGGGTCAGCTTCTGACCTGCTCTGC
GGGAGGCCAATACCGCAGAAGGGGTCCTGGGCTCGCACACCTTCCCAGGG
CTTGAGCCTTGCAGCCCTGCTGCAATAACTACCCGTGA
27AGGAAGGGAAAGCGCAAGAGAGAGCGCACACGCACACACCCGCCGCGCGC
ACTCGCGCACGGACCCGCACGGGGACAGCTCGGAAGTCATCAGTTCCATG
GGCGAATGCTGCTGCTGGCGAGATGTCTGCTGCTAGTCCTCGTCTCCTCG
CTGCGGTATGCTCGGGACTGGCGTGCGGACCGGGCAGGGGGTTCGGGAAG
AGGAGGCACCCCAAAAAGCTGACCCCTTTAGCCTACAAGCAGTTTATCCC
CAATGTGGCCGAGAAGACCCTAGGCGCCAGCGGAAGGTATGAAGGGAAGA
TCTCCAGAAACTCCGAGCGATTTAAGGAACTCACCCCCAATTACAACCCC
GACATCATATTTAAGGATGAAGAAAACACCGGAGCGGACAGGCTGATGAC
TCAGTAGGAACCCAGCGCCGGGGCGTGGAATGTGTGGCTTTCCAGGGGGT
TACGAGAAGCCGAACACTTCCAGACTTAACTCTGTTTGCTCTTCGGGCAG
ATGAAGGTGATTTCACCCGCTCCTTCCCCACCCACCTGCCCGCCCCCCAT
TCTTCCTCTTCCTGGAGGAGAATGGAGGTCAAGGGTCCAGCTGGAGAAGT
TAGGGTGTGGTGGGGGTGAGGACGGTAACAGACGTGGTTCATTATGGCCT
GATTTGATGAGTCTTGCTACAATGGCCTTCCCCATCCTACCTCTGCCTGG
CTTGTAACTTGGGGAGACCTTCACTTTGGGGGCGTCGGCCCTTTCCAGTC
AGGAGTGGAAATGGAAGGAGAGGCTGGGAATCCCCCTCCCACAAACATGA
AGTGGTCTCCTGGTACTGTACGAACGAACGAACGTAGCCTTGGGCTTGGA
GCTCAGAGCCCCCACGTTTCCCGTTGCCTCTGTGGTTTTCTTTCCACCAC
TACCCCCACCCTGCACCTCCCCACCAAAGAATTCTCAACTGGAAAAGCCA
GGAGGCGGTTCTGACAAAAGGCAGGGGCTCCAGGGGAGACTCCCCCGTCC
CTGGGTGGCTGGCTGTATCGCAGAGCTGGCTTTGCGATTGCGTGTCCGCA
ATTGTGCCCATCAGAGTGTGAATGTATTGATATTTCTTTAAGGATGCTCT
TTCGTTCTTCCAAGCCCGAGGTACCTTAGGGGAGGGACTTAGAACTTATT
GGCATTGCATCACTTTAGTTTTCAACCTGCTTGCATAAGAATTAAGAGCG
AATAAATATTAGTGTGGGGGGAGGGGAAGCTAAGCAAAATATGAATTCCT
CTCTCTCTCCCCACCTCCTTTGAGATTTCTGAGCTGCCAATCTCCCAGCC
AATTCTAGACTTTCTGAAACTCCATGCACGTATAACTGAAGCCAGAAATG
GGTTTCCTTGCAAATATAGGTCAACATCCTTTTTATTGCCCTATTAAAAT
ATTCAAGTCCTACCTTTAGGGCTAGGTGCGTACAGCGGCTGATGGAGTGG
CGCTGGTGGGGCGCAAGTGCAGGGGGAGGGTACTGACGGCAGAGAGAGAG
GAGCTACCTCCGTGCCGCCCTGCTTCCCGACCCGATTCCCAGGCTTGCTT
GAGGCCGAGAAAGGCGAGGGGCAGGCAAGGTAGCCTGCTCCAGCTGTCGG
AAGGGAGAGGAATGGGAAATGGTCCTGATTTCCTTGCTCTCCCTCATCTG
CTCCCGACCACCTTAAATCTGGACCGCGAGTGTGGACGCGCGCGCCAGTG
CCAGACAGCAGCGCGATCCACAATTAACTCTGCACGGGCCATGGGGTGCC
CGTTGCGTGCAGCTGGCTGGAGGGAGTTCTCCGGCTAGCCCGAGGCGCCC
ATCCTCTCGTCACCCTCACTCCCCGCGGAGGAGGGGCCTTGCCAGGGTCC
CTCGGAACCCGAGAGGAGGGAGGCACTGCGGAGAGAGCGGCGGGGGCGTG
GATACCCGAGGTCCCAGAGCCAGAGTGGGTCAGCTTCTGACCTGCTCTGC
GGGAGGCCAATACCGCAGAAGGGGTCCTGGGCTCGCACACCTTCCCAGGG
CTTGAGCCTTGCAGCCCTGCTGCAAAAAAAAAAAAAAA
98
28(No Transcript)
29Noncoding regulatory sequences
nucleotide changes
Differences in gene expression
3098 of the genome
AGGAAGGGAAAGCGCAAGAGAGAGCGCACACGCACACACCCGCCGCGCGC
ACTCGCGCACGGACCCGCACGGGGACAGCTCGGAAGTCATCAGTTCCATG
GGCGAATGCTGCTGCTGGCGAGATGTCTGCTGCTAGTCCTCGTCTCCTCG
CTG
Comparative Genomics
NO CODE
31Evolutionary conservation can find regulatory
elements
Non-Coding Sequence
Last common ancestor
Evolutionarily Conserved Sequences are
Functionally Important.
3298 of the genome
AGGAAGGGAAAGCGCAAGAGAGAGCGCACACGCACACACCCGCCGCGCGC
ACTCGCGCACGGACCCGCACGGGGACAGCTCGGAAGTCATCAGTTCCATG
GGCGAATGCTGCTGCTGGCGAGATGTCTGCTGCTAGTCCTCGTCTCCTCG
CTG
Comparative Genomics
NO CODE
High-Throughput Characterization
33Regulatory Elements Promoter, Enhancer,
Silencer, Insulator
Insulator
Promoter
Gene A
Enhancers
34Enhancer Assay
35Zebrafish Enhancers
36Bins of Enhancer Activities
6
http//enhancer.lbl.gov
37Applications
1. Gene/Genome annotation 2. Reagent to drive
tissue specific expression 3. EvoDevo 4.
Exploring the regulatory code 5. Role of
regulatory sequences in human disease
383. EvoDevo The bat Prx1 limb enhancer leads to
longer limbs in the mouse
Mouse limb en.
Prx1
/
Cretekos Genes Dev. 2008, 22141-51
394. Exploring the regulatory code
6
40Applications
1. Gene/Genome annotation 2. Reagent to drive
tissue specific expression 3. EvoDevo 4.
Exploring the regulatory code 5. Role of
regulatory sequences in human disease
41Limb enhancer with substantial evidence for
involvement in human disease
Mutations
Holoprosencephaly Limb Other
42gt100 limb enhancers discovered
43Limb malformations outline
- Mutation analysis in humans
Syndactyly
Polysyndactyly
Find Additional Limb Enhancers
- Computational approaches next generation
sequencing
441. Gene regulation
2. Histone code
45Histone Modifications more code to decipher
146bp
46Histones have tails
47Histone H3 Example
H3K18ac
H3K4me
1
3
Cleavage
Acetylation
Methylation
Unknown
Unknown
Repression
Repression
Activation
Activation
KLysine Methylated or Acetylated
RArginine Methylated
48Munshi A. et al. Gen Genom 2009, 36 75-88
49OUTLINE
1. The human genome
2. Novel sequencing technologies
3. New genomic terrains to be uncovered
4. Advantages of individual genomes
5. Challenges risks of individual genomes
501. Predicting disease risk.
2. Drug response.
51Finding specific nucleotide variants can predict
disease risk
52Most assoicated common variants of common
diseases do not give a high disease risk
Manollo T.A. et al. JCI 2008, 118 1590-1605
53(No Transcript)
54Ancestry Tracing
551. Predicting disease risk.
2. Drug response.
56Example of genetic variation drug response
Irinotecan
(TA)7TAA
15
Reduced UGT1A1 expression
MORE SN-38 (active)
Diarrhea, Leucopaenia
Rapid testing kit for (TA)7 variant
57(No Transcript)
581. Predicting disease risk.
2. Drug response.
59OUTLINE
1. The human genome
2. Novel sequencing technologies
3. New genomic terrains to be uncovered
4. Advantages of individual genomes.
5. Challenges risks of individual genomes.
60Whole-genome matchmaking
61(No Transcript)
62Challenges Risks
- Psychological and social effects of genetic
testing for the individual tested.
- How will your genome be stored and accessed?
- How should health insurance companies treat
genomic data?
-Companies might only insure people with
healthy genomes.
-Therapies could be reimbursed only for those
patients who are identified as likely to respond?
- How narrowly should clinical trials be designed
to include or exclude people based on their
genome.
63(No Transcript)
64Ahituv Lab
Ramon Y. Birnbaum Mee J. Kim Qiang Li Karl
Murphy Elaine Nitta Nir Oksenberg Julia E.
VanderMeer
UCSF
Deanna L. Kroetz Kathleen M. Giacomini Katherine
S. Pollard
Berkeley Lab JGI
Len A. Pennacchio Edward M. Rubin
Stanford
Gill Bejerano
Funding Sandler, NIGMS, NICHD, NHGRI
65(No Transcript)
66(No Transcript)