FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

Description:

ca. a. b. ca. a. ab. abc. c. a. ab. b. ca. ca. a. abc. c. ca. a. acc. ca. abc ... aaa. a. a. c. a. aa. c. a. aaa. a. a. aa. FPCP. ba. a. a. ab. b. bcb. b. a ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 31
Provided by: luisv2
Category:

less

Transcript and Presenter's Notes

Title: FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY


1
15-453
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
2
THE POST CORRESPONDENCE PROBLEM
THURSDAY OCT 6
3
THE PCP GAME
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
GENERAL RULE 1
If every top string is longer than the
corresponding bottom one, there cant be a match
8
(No Transcript)
9
GENERAL RULE 2
If there is a domino with the same string on the
top and on the bottom, there is a match
10
POST CORRESPONDENCE PROBLEM
Given a collection of dominos, is there a match?
PCP P P is a set of dominos with a match
PCP is undecidable!
11
THE FPCP GAME
is just like the PCP game except that a match
has to start with the first domino
12
FPCP
13
FPCP
14
Theorem FPCP is undecidable
Proof
Assume machine C decides FPCP
We will show how to use C to decide ATM
15
Given (M,w)
we will construct a set of dominos P where a
match is an accepting computation history for M
on w
P
C
P has a match?
16
x ? x, L
2n
0 ? 0, L
0 n 0
q2
? ? ?, R
? ? ?, L
x ? x, R
x ? x, R
q0
q1
q3
0 ? ?, R
0 ? x, R
x ? x, R
0 ? 0, R
? ? ?, R
0 ? x, R
? ? ?, R
qaccept
q4
x ? x, R
? ? ?, R
17
q00000
?q1000
?xq300
?x0q40
?x0xq3
?x0q2x
?xq20x
?q2x0x
q2?x0x
q00000?q1000?xq300?x0q40?x0xq3 ...

18
Given (M,w), we will construct an instance P of
FPCP in 7 steps
19
STEP 1
Put
into P
20
STEP 2
If ?(q,a) (p,b,R) then add
STEP 3
If ?(q,a) (p,b,L) then add
for all c ? G
21
x ? x, L
2n
0 ? 0, L
0 n 0
q2
? ? ?, R
? ? ?, L
x ? x, R
x ? x, R
q0
q1
q3
0 ? ?, R
0 ? x, R
x ? x, R
0 ? 0, R
? ? ?, R
0 ? x, R
? ? ?, R
qaccept
q4
x ? x, R
? ? ?, R
22

23
STEP 4
add
for all a ? G
STEP 5
add
STEP 6
add
for all a ? G
24
(No Transcript)
25
STEP 7
add
26
0 ? 0, R
? ? ?, R
q0
q1
qaccept
0 ? 0, R
? ? ?, R
27
Given (M,w), we can construct an instance of FPCP
that has a match if and only if M accepts w
28
Can convert an instance of FPCP into one of PCP
Let u u1u2un, define
?u ? u1 ? u2 ? u3 ? ? un
u? u1 ? u2 ? u3 ? ? un ?
?u? ? u1 ? u2 ? u3 ? ? un ?

FPCP

PCP
29
Given (M,w), we can construct an instance of PCP
that has a match if and only if M accepts w
30
WWW.FLAC.WS
Read chapters 5.2 and 5.3 of the book for next
time
Write a Comment
User Comments (0)
About PowerShow.com