Title: Recent Results from KamLAND
1Recent Results from KamLAND
BNL January 17, 2006
2Outline
- Historical Introduction
- Neutrino physics
- Neutrino mixing and oscillations
- KamLAND reactor neutrino results
- Geoneutrinos
- Future prospects
3Discovery of the Neutrino 1956
F. Reines, Nobel Lecture, 1995
4Subsequent History
- 60s and 70s n became the darling of
accelerator-based particle physics - ne ? nm
- 1968 1st solar n anomaly evidence
- 1980s new interest in neutrino oscillations
(F. Reines, ..) - 1980-present the quest for neutrino oscillations
- 1998 evidence from Super-K
5Super-Kamiokande Results
6Two Generation Model
7Missing solar neutrinos
8(No Transcript)
9(No Transcript)
10Matter Enhanced Oscillation (MSW)
Mikheyev, Smirnov, Wolfenstein
11Maki Nakagawa Sakata Matrix
CP violation
12Pre KamLAND summary
- Persistent observations of deficit of solar
neutrinos - 1998 observation of oscillations of atmospheric
neutrinos by Super-K - 2002 SNO results imply matter-dependent
oscillations of solar neutrinos
Time to get our feet on the ground!!
13W.A. Fowler Nobel Lecture, 1983
14(No Transcript)
15Enter
- Long Baseline (180 km)
- Calibrated source(s)
- Large detector (1 kton)
- Deep underground (2700 mwe)
16 Neutrino Oscillation Studies with Nuclear
Reactors
- ne from n-rich fission products
- detection via inverse beta decay (nepgen)
- Measure flux and energy spectrum
- Improve detectors, reduce background
- Variety of distances L 10-1000 m
17Detection Signal
- Coincidence signal detect
- Prompt e annihilation g
EnEpromptEn0.8 MeV - Delayed n capture 180 ms capture time
18(No Transcript)
19The Reactor Neutrino Flux and Spectrum
- 235U, 239Pu, 241Pu from b measurements
- 238U calculated
- Time dependence due to fuel cycle
20Precise Measurements
Flux and Energy Spectrum g 1-2
21Negative Oscillation Searches
103
Distance (m)
22The BIG picture
(From PDG)
SK atm (nmgnt)
23KamLAND uses the entire Japanese nuclear
power industry as a longbaseline source
24Many reactors contribute to the antineutrino flux
at KamLAND
Site Site Dist (km) Cores () Ptherm (GW) Flux (cm-2 s-1) Rate noosc (yr-1 kt-1)
Japan Kashiwazaki 160 7 24.3 4.1105 254.0
Japan Ohi 179 4 13.7 1.9105 114.3
Japan Takahama 191 4 10.2 1.2105 74.3
Japan Tsuruga 138 2 4.5 1.0105 62.5
Japan Hamaoka 214 4 10.6 1.0105 62.0
Japan Mihama 146 3 4.9 1.0105 62.0
Japan Sika 88 1 1.6 9.0104 55.2
Japan Fukushima1 349 6 14.2 5.1104 31.1
Japan Fukushima2 345 4 13.2 4.8104 29.5
Japan Tokai2 295 1 3.3 1.6104 10.1
Japan Onagawa 431 3 6.5 1.5104 9.3
Japan Simane 401 2 3.8 1.0104 6.3
Japan Ikata 561 3 6.0 8.3103 5.1
Japan Genkai 755 4 10.1 7.8103 4.8
Japan Sendai 830 2 5.3 3.4103 2.1
Japan Tomari 783 2 3.3 2.3103 1.4
South Korea Ulchin 712 4 11.5 9.9103 6.1
South Korea Yonggwang 986 6 17.4 7.8103 4.8
South Korea Kori 735 4 9.2 7.5103 4.6
South Korea Wolsong 709 4 8.2 7.1103 4.3
Total Nominal Total Nominal - 70 181.7 1.3106 803.8
E?gt3.4MeV (Epromptgt2.6MeV)
Detailed power and fuel Composition calculation
used
From electrical power Japanese average fuel used
25A limited range of baselines contribute to the
flux of reactor antineutrinos at Kamioka
Korean reactors 3.40.3 Rest of the world JP
research reactors 1.10.5 Japanese spent
fuel 0.040.02
26Spectrum Distortion
27(No Transcript)
28(No Transcript)
29Front End Electronics
Waveforms are recorded using Analog Transient
Waveform Digitizers (ATWDs), allowing multi p.e.
resolution
Blue raw data red pedestal green pedestal
subtracted
- The ATWDs are self launching with a threshold
1/3 p.e. - Each PMT is connected to 2 ATWDs, reducing
deadtime - Each ATWD has 3 gains (20, 4, 0.5), allowing a
dynamic range of 1mV to 1V
ADC counts (120 mV)
Samples (1.5ns)
30The KamLAND Collaboration
31KamLANDtimeline
- Summer 2000 PMT installation
- Jun-Sept 2001 Fill Liquid Scintillator
- Jan, 2002 Begin Data Taking
- Dec, 2002 Report 1st
Physics Results - Jun 2004 Report 2nd Reactor ? Results
- Sept 2005 Report geoneutrino evidence
32DE/E 6.2 /vE , Light Yield 300p.e./MeV
DEsyst 2.0 at 2.6 MeV
33Tagged cosmogenics can be used for calibration
t29.1ms Q13.4MeV
12B
12N
t15.9ms Q17.3MeV
µ
Fit to data shows that 12B12N 1001
34Energy calibration uses discrete ? and 12B/12N
n-p
n-12C
68Ge
60Co
65Zn
Carefully include Birks law, Cherenkov and light
absorption/optics to obtain constants for ? and
etype depositions
s/E 6.2 at 1MeV
35Vertexing is performed using timing from the 17
PMTs
-60 (2.6MeV)
Am/Be(8MeV)
-65 (1.1MeV)
-68 (1.0MeV)
z
36Fraction of volume inside the fiducial radius
verified using µ-produced 12B/12N and n (assumed
uniform)
12B/12N
neutrons
37Estimate of total volume and fiducial fraction
38Singles Background
SourceMeasuredPredicted
14C?
210Pb 102Hz--
High Energy (e.g. µ) 0.33Hz0.33Hz
85Kr 606 Hz--
40K1.9Hz2.1Hz
208Tl 3.2Hz1.4Hz
232Th, cosmogenic 0.19Hz
39(No Transcript)
40Selecting antineutrinos, Epromptgt2.6MeV
5.5 m fiducial cut
- - Rprompt, delayed lt 5.5 m
- - ?Re-n lt 2 m
- - 0.5 µs lt ?Te-n lt 1 ms
- 1.8 MeV lt Edelayed lt 2.6 MeV
- 2.6 MeV lt Eprompt lt 8.5 MeV
- Tagging efficiency 89.8
(543.7 ton)
Balloon edge
- In addition
- 2s veto for showering/bad µ
- 2s veto in a R 3m tube along track
- Dead-time 9.7
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45Observed Event Rates
2002-4 dataset 766.3 tonyr, Eprompt
gt 2.6 MeV Observed 258
events No-oscillation 365.2 23.7
events Background 17.6 7.2 events
accidental 2.69 0.02 9Li/8He (b, n) 4.8
0.9 fast neutron lt 0.89 13C(a,n) 10.0
7.1
46Evidence for Reactor ne Disappearance!!
99.998 C.L.
47Systematic
Scintillator volume 2.1
Fiducial fraction 4.2
Energy threshold 2.3
Cuts efficiency 1.6
Live time 0.06
Reactor Pthermal 2.1
Fuel composition 1.0
Time lag 0.01
Antineutrino spectrum 2.5
Antineutrino x-section 0.2
Total 6.5
48Ratio of Measured and Expected ne Flux from
Reactor Neutrino Experiments
49Oscillation Effect
50(No Transcript)
51Correlation with reactor power variation
52KamLAND best fit Dm2 7.9 x 10-5 eV2 tan2q
0.45
53 54Combined fit with solar neutrino data
Dm27.90.6-0.5x10-5 eV2 tan2q0.400.10-0.07
55Solar Neutrino Results
Open circles combined best fit Closed circles
experimental data
56(No Transcript)
57Geoneutrinos the early history
58More recent references
59Geoneutrinos
- U/Th/K in crust/mantle
- - amount of activity
- - distribution
- Energy budget heat generation
- - plate tectonics
- - magnetic field
- Structure of earths core
- - constrain models
- - georeactor?
60(No Transcript)
61(No Transcript)
62Inside the Earth
Region Thickness (km )
Continental crust 38 (20 70)
Oceanic crust 6-8
Upper Mantle 600
Lower Mantle 2300
Core 3500
63 U/Th Distribution
64Geoneutrino spectrum
65The predicted sources of geoneutrinos
66KamLAND Data
13C(a,n)
Reactor n
Randoms
U
Th
67Confidence Intervals
68The press was interesting
Hindustan Times, August 8, 2005
69And finally
70KamLAND Future
- Precision Reactor Neutrino Measurements
- - 4p calibration system
- - refine analysis methods
- - more statistics
- Supernova detection
- Precision Solar Neutrino Measurements
- - radiopurity
- - low energy threshold
- More precise geoneutrino measurement
71Neutrino-proton elastic scattering
??, ?? ,??, ??
?e
?e
72(No Transcript)
73(No Transcript)