Matrix learning for topographic neural maps - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Matrix learning for topographic neural maps

Description:

Chidchanonk Lursinsap, Chulalongkorn University, Thailand. Neural maps. k-means. SOM ... Neural maps. Prototype based clustering. prototypes element of data space ... – PowerPoint PPT presentation

Number of Views:40
Avg rating:3.0/5.0
Slides: 28
Provided by: sebastia3
Category:

less

Transcript and Presenter's Notes

Title: Matrix learning for topographic neural maps


1
Matrix learning for topographic neural maps
Banchar Arnonkijpanich, Khon Kaen University,
Thailand Barbara Hammer, TU Clausthal,
Germany Alexander Hasenfuss, TU Clausthal,
Germany Chidchanonk Lursinsap, Chulalongkorn
University, Thailand
2
  • Neural maps
  • k-means
  • SOM
  • NG
  • Matrix learning
  • Previous work
  • Batch matrix learning
  • Convergence
  • Experiments
  • Proof of concept
  • UCI
  • Image compression

3
Neural maps
4
Neural maps
  • Clustering
  • too many data
  • reduce size, improve accessability

5
Neural maps
  • Topographic mapping
  • still too many data
  • mutual connection
  • visualization

6
Neural maps
  • Prototype based clustering
  • prototypes element of data space
  • clustering by means of receptive fields
  • Pros
  • robust
  • interpretable
  • incremental
  • efficient
  • excellent generalization

7
Neural maps
  • Prototype based clustering
  • quantization error EVQ ?ij?(xj,wi) (xj-wi)2
    where ?(xj,wi) indicates the receptive field
  • (xj-wi)2 is the euclidean distance

8
k-means
optimize EVQ ?ij?(xj,wi) (xj-wi)2
kij
k-means repeat optimize
kij given fixed w optimize
w given fixed kij i.e. repeat
kij 1 iff wi winner for xj
wi ?j kij xj / ?j
kij converges, Newton scheme, initialization
sensitive
9
SOM
  • Self-organizing map Kohonen
  • prototypes equipped with a prior lattice
    structure
  • direct visualization in euclidean or hyperbolic
    space

10
SOM
optimize ESOM ?ij?j(i)?kexp(-nd(i,k )/s)
(xj-wk)2
kij
Batch-SOM repeat
optimize kij given fixed w
optimize w given fixed kij i.e.
repeat kij 1 iff wi
winner for xj , I(xi) winner
wi ?j exp(-nd(I(xj),i)/s) xj / ?j
exp(-nd(I(xj),i)/s) converges, Newton scheme,
topological mismatches possible
11
Neural Gas
  • Neural Gas Martinetz
  • prototypes adapted according to data topology
  • optimize ENG ?ijexp(-rk(xj,wi)/s) (xj-wi)2

neighborhood graph induced by Delaunay
triangulation visualization by means of MDS or
similar
3rd
1st
2nd
12
Neural Gas
optimize ENG ?ijexp(-rk(xj,wi)/s) (xj-wi)2
kij
Batch-NG Cottrell, Hammer, Hasenfuss,
Villmann repeat
optimize kij given fixed w
optimize w given fixed kij i.e.
repeat kij rank of
prototype wi given xj wi
?j exp(-kij/s) xj / ?j exp(-kij/s) converges,
Newton scheme
13
Matrix learning
14
Matrix learning
  • Matrix learning
  • data not properly scaled
  • data correlations

15
Matrix learning
16
Previous work
  • metric / matrix learning for supervised
    prototype-based schemes
  • metric learning for semi-supervised settings
  • metric / matrix learning for fuzzy clustering
  • metric learning for k-means, SOM, NG by a
    combination of PCA and clustering
  • no matrix learning scheme derived from a unique
    cost function for topographic neural maps
  • no convergence proofs for these settings

17
Batch matrix learning
  • objective (exemplarily for NG)
  • optimize ENG (w, ?) ?ijexp(-rk(xj,wi)/s)
    (xj-wi)t ?i (xj-wi)
  • where
  • det ?i 1
  • ?i symmetric and positive semidefinite
  • Batch scheme
  • optimize ENG (w, ?, k) ?ijexp(-kij)/s) (xj-wi)t
    ?i (xj-wi)
  • where
  • det ?i 1
  • ?i symmetric and positive semidefinite
  • kij is permutation of 0 .. k.1 for every j

18
Batch matrix learning
  • repeat
  • kij rank of prototype wi given xj measured
  • according to xi-wj?i
  • wi ?j exp(-kij/s) xj / ?j exp(-kij/s)
  • ?i Si-1 (det Si)1/n where
  • Si ?j exp(-kij/s) (xj-wi)(xj-wi)t

symmetric positive semidefinite
19
Batch matrix learning
  • Si corresponds to Mahalanobis distance
  • Si aligns with the principal directions of the
    extended receptive field
  • scaling is according to inverse eigenvalues

20
Convergence
  • batch matrix learning can be seen as interleaved
    local PCA and NG
  • derived from a unique cost function
    ENG (w, ?)
    ?ijexp(-rk(xj,wi)/s) (xj-wi)t ?i (xj-wi) resp.
    ENG (w, ?, k)
    ?ijexp(-kij)/s) (xj-wi)t ?i (xj-wi)
  • batch optimization finds global optima of
  • k given fixed w, ?
  • w given fixed k, ?
  • ? given fixed w, k
  • therefore, ENG (w, ?, k) decreases in every
    step and convergence is guaranteed

21
Experiments
22
Proof of concept
23
Proof of concept
24
UCI
25
Image compression
  • local window size 8x8
  • matrix NG with 16 clusters
  • store only 32 main principle components and
    corresponding directions

26
Image compression
  • original
    compressed

27
Thank you for your attention!
Write a Comment
User Comments (0)
About PowerShow.com