VEDIC MATHEMATICS : Arithmetic Operations - PowerPoint PPT Presentation

About This Presentation
Title:

VEDIC MATHEMATICS : Arithmetic Operations

Description:

Two Digit Multiplication (above the base) using Vedic Approach ... Quick Multiplication : Special Case. Proof: Let two digit numbers be AB and AC. AB * AC ... – PowerPoint PPT presentation

Number of Views:299
Avg rating:3.0/5.0
Slides: 29
Provided by: csWr
Category:

less

Transcript and Presenter's Notes

Title: VEDIC MATHEMATICS : Arithmetic Operations


1
VEDIC MATHEMATICS Arithmetic Operations
  • T. K. Prasad
  • http//www.cs.wright.edu/tkprasad

2
Positional Number System
TEN-THOUSANDS THOUSANDS HUNDREDS TENS UNITS
43210 4 10,000 3 1,000 2 100 1
10 0
3
Two Digit Multiplication (above the base) using
Vedic Approach
  1. Method Vertically and Crosswise Sutra
  2. Correctness and Applicability

4
Method Multiply 13 12
  • Write the first number to be multiplied and
    excess over 10 in the first row, and the second
    number to be multiplied and excess over 10 in the
    second row.
  • 13 3
  • 12 2

5
  • 13 3
  • 12 2
  • To determine the 3-digit product
  • add crosswise to obtain the left digits
  • (13 2) (12 3) 15
  • and
  • multiply the excess vertically to obtain the
    right digit.
  • (3 2) 6
  • 13 12 156

6
Another Example
  • 12 14
  • 12 2
  • 14 4
  • 16 8
  • 12 14 168

7
Questions
  • Why do both crosswise additions yield the same
    result?
  • Why does this method yield the correct answer for
    this example?
  • Does this method always work for any pair of
    numbers?

8
Proof Sketch
  • (12 4) (14 2) 16
  • Why are they same?
  • That is, the sum of first number and excess over
    10 of the second number, and .
  • (12 (14 10)) (1214 10) (26 10) 16
  • (14 (12 10)) (1412 10) (26 10) 16

9
Correctness ArgumentTwo possibilities
  • 12 (10 2)
  • 14 (10 4)
  • 12 14
  • (10 2) 14
  • 10 14 2 14
  • 10 14 2 (10 4)
  • 10 14 2 10 (2 4)
  • 10 (142) 8
  • 10 16 8
  • 168
  • 12 (10 2)
  • 14 (10 4)
  • 12 14
  • 12 (10 4)
  • 12 10 12 4
  • 12 10 (10 2) 4
  • 12 10 10 4 (2 4)
  • 10 (12 4) 8
  • 10 16 8
  • 168

Right digit Vertical Product
Right digit Vertical Product
Left digits Crosswise Addition
Left digits Crosswise Addition
10
Another Example
  • 15 12
  • 15 5
  • 12 2
  • 17 10
  • 18 0

11
Yet Another Example
  • 17 15
  • 17 7
  • 15 5
  • 22 35
  • 223 5
  • 25 5
  • Need proof to feel comfortable!

12
Method Multiply 113 106
  • Write the first number to be multiplied and
    excess over 100 in the first row, and the second
    number to be multiplied and excess over 100 in
    the second row.
  • 113 13
  • 106 6

13
  • 113 13
  • 106 6
  • To determine the 5-digit product
  • add crosswise to obtain the left digits
  • (113 6) (106 13) 119
  • and
  • multiply the excess vertically to obtain the
    right digits.
  • (13 6) 78
  • 113 106 11978

14
Questions
  • Why do both crosswise additions yield the same
    result?
  • Why does this method yield the correct answer for
    this example?
  • Does this method always work for any pair of 3
    digit numbers?

15
Proof Sketch
  • (113 6) (106 13) 119
  • Why are they same?
  • (113 (106 100)) (113 106 100) 119
  • (106 (113 100)) (106 113 100) 119

16
Correctness of Product Two possibilities
  • 113 (100 13)
  • 106 (100 6)
  • 113 106
  • 113 (100 6)
  • 113 100 (100 13) 6
  • 113 100 100 6 (13 6)
  • 100 (113 6) 78
  • 100 119 78
  • 11978
  • 113 (100 13)
  • 106 (100 6)
  • 113 106
  • (100 13) 106
  • 100 106 13 (100 6)
  • 100 106 13 100 (13 6)
  • 100 (106 13) 78
  • 100 119 78
  • 11978

Right digits Vertical Product
Right digits Vertical Product
Left digits Crosswise Addition
Left digits Crosswise Addition
17
Another Example
  • 160 180
  • 160 60
  • 180 80
  • 240 4800
  • 288 00
  • Note that, the product of the excess over 100 has
    more than two digits. However, the weight
    associated with 240 and 48 are both 100, and
    hence they can be combined.

Breakdown?!
18
Yet Another Example
  • 190 199
  • 190 90
  • 199 99
  • 289 8910
  • 28989 10
  • 378 10
  • This approach is valid with suggested
    modifications!

Breakdown?!
19
More Shortcuts
20
Quick squaring of numbers that end in 5
  • 15 15
  • 225
  • (12) (55)
  • 75 75
  • 5625
  • (78) (55)
  • 95 95
  • 9025
  • (910) (55)
  • Proof Let the two digit number be written as D5.
  • D5 D5
  • (D10 5) (D10 5)
  • (DD100) (D250) 55
  • (D(D1))100 25

21
Quick Multiplication Special Case
  • Proof Let two digit numbers be AB and AC.
  • AB AC
  • (A10 B) (A10 C)
  • (AA100) (A10(BC)) BC
  • (AA)100 (A)(BC)10 (BC)
  • For BC10, this reduces to
  • A(A1)100 BC
  • For A12, B8 and C2, this reduces to
  • (12)(13)100 16
    15616

22
Quicking squaring of numbers that begin with 5
  • 51 51
  • (551)100 (11)
  • 2601
  • 57 57
  • (557) 100 (77)
  • 3249
  • 59 59
  • (559) 100 (99)
  • 3481
  • Proof Let the two digit number be written as 5D.
  • 5D 5D
  • (50 D) (50 D)
  • (25 D)100 (DD)

23
Quick squaring of two digit numbers
  • Proof Let two digit numbers be AB.
  • AB AB
  • (A10 B) (A10 B)
  • (AA)100 2(A10)B BB
  • (AA)100 20(AB) (BB)
  • For AB79, this reduces to 4900206381

  • 49811260 6241
  • For AB116, this reduces to 12100206636

  • 121361320 13456

24
Generalized Multplication Using Working Base
25
  • 23 3
  • 24 4
  • To determine the product, choose working base as
    20
  • add crosswise to obtain the left digits with
    weight 20
  • (23 4) (24 3) 27
  • multiply the excess vertically to obtain the
    right digits.
  • (3 4) 12
  • 23 24 27 20 12
  • 540 12
  • 23 24 552

26
  • 723 23
  • 724 24
  • To determine the product, choose working base as
    700
  • add crosswise to obtain the left digits with
    weight 700
  • (723 24) (724 23) 747
  • multiply the excess vertically to obtain the
    right digits.
  • (23 24) 552
  • 723 724 747 700 552
  • 522900 552
  • 723 724 523452

27
  • 783 -17
  • 775 -25
  • To determine the product, choose working base as
    800
  • add crosswise to obtain the left digits with
    weight 800
  • (783 - 25) (775 - 17) 758
  • multiply the excess vertically to obtain the
    right digits.
  • (17 25) 425
  • 783 775 758 800 425
  • 606400 425
  • 783 775 606825

28
  • 532 32
  • 472 -28
  • To determine the product, choose working base as
    1000/2
  • add crosswise to obtain the left digits with wt.
    1000/2
  • (532 - 28) (472 32) 504
  • multiply the excess vertically to obtain the
    right digits.
  • (32) (-28) 896
  • 532 472 (504 / 2)1000 (104 -1000)
  • 252000 104 - 1000
  • 532 472 251104
Write a Comment
User Comments (0)
About PowerShow.com