Title: VEDIC MATHEMATICS : Arithmetic Operations
1VEDIC MATHEMATICS Arithmetic Operations
- T. K. Prasad
- http//www.cs.wright.edu/tkprasad
2Positional Number System
TEN-THOUSANDS THOUSANDS HUNDREDS TENS UNITS
43210 4 10,000 3 1,000 2 100 1
10 0
3Two Digit Multiplication (above the base) using
Vedic Approach
- Method Vertically and Crosswise Sutra
- Correctness and Applicability
4Method Multiply 13 12
- Write the first number to be multiplied and
excess over 10 in the first row, and the second
number to be multiplied and excess over 10 in the
second row. - 13 3
- 12 2
5- 13 3
- 12 2
- To determine the 3-digit product
- add crosswise to obtain the left digits
- (13 2) (12 3) 15
- and
- multiply the excess vertically to obtain the
right digit. - (3 2) 6
- 13 12 156
6Another Example
- 12 14
- 12 2
- 14 4
- 16 8
- 12 14 168
7Questions
- Why do both crosswise additions yield the same
result? - Why does this method yield the correct answer for
this example? - Does this method always work for any pair of
numbers?
8Proof Sketch
- (12 4) (14 2) 16
- Why are they same?
- That is, the sum of first number and excess over
10 of the second number, and . - (12 (14 10)) (1214 10) (26 10) 16
- (14 (12 10)) (1412 10) (26 10) 16
9Correctness ArgumentTwo possibilities
- 12 (10 2)
- 14 (10 4)
- 12 14
- (10 2) 14
- 10 14 2 14
- 10 14 2 (10 4)
- 10 14 2 10 (2 4)
- 10 (142) 8
- 10 16 8
- 168
- 12 (10 2)
- 14 (10 4)
- 12 14
- 12 (10 4)
- 12 10 12 4
- 12 10 (10 2) 4
- 12 10 10 4 (2 4)
- 10 (12 4) 8
- 10 16 8
- 168
Right digit Vertical Product
Right digit Vertical Product
Left digits Crosswise Addition
Left digits Crosswise Addition
10Another Example
- 15 12
- 15 5
- 12 2
- 17 10
- 18 0
11Yet Another Example
- 17 15
- 17 7
- 15 5
- 22 35
- 223 5
- 25 5
- Need proof to feel comfortable!
12Method Multiply 113 106
- Write the first number to be multiplied and
excess over 100 in the first row, and the second
number to be multiplied and excess over 100 in
the second row. - 113 13
- 106 6
13- 113 13
- 106 6
- To determine the 5-digit product
- add crosswise to obtain the left digits
- (113 6) (106 13) 119
- and
- multiply the excess vertically to obtain the
right digits. - (13 6) 78
- 113 106 11978
14Questions
- Why do both crosswise additions yield the same
result? - Why does this method yield the correct answer for
this example? - Does this method always work for any pair of 3
digit numbers?
15Proof Sketch
- (113 6) (106 13) 119
- Why are they same?
- (113 (106 100)) (113 106 100) 119
- (106 (113 100)) (106 113 100) 119
16Correctness of Product Two possibilities
- 113 (100 13)
- 106 (100 6)
- 113 106
- 113 (100 6)
- 113 100 (100 13) 6
- 113 100 100 6 (13 6)
- 100 (113 6) 78
- 100 119 78
- 11978
- 113 (100 13)
- 106 (100 6)
- 113 106
- (100 13) 106
- 100 106 13 (100 6)
- 100 106 13 100 (13 6)
- 100 (106 13) 78
- 100 119 78
- 11978
Right digits Vertical Product
Right digits Vertical Product
Left digits Crosswise Addition
Left digits Crosswise Addition
17Another Example
- 160 180
- 160 60
- 180 80
- 240 4800
- 288 00
- Note that, the product of the excess over 100 has
more than two digits. However, the weight
associated with 240 and 48 are both 100, and
hence they can be combined.
Breakdown?!
18Yet Another Example
- 190 199
- 190 90
- 199 99
- 289 8910
- 28989 10
- 378 10
- This approach is valid with suggested
modifications!
Breakdown?!
19More Shortcuts
20Quick squaring of numbers that end in 5
- 15 15
- 225
- (12) (55)
- 75 75
- 5625
- (78) (55)
- 95 95
- 9025
- (910) (55)
- Proof Let the two digit number be written as D5.
- D5 D5
- (D10 5) (D10 5)
- (DD100) (D250) 55
- (D(D1))100 25
21Quick Multiplication Special Case
- Proof Let two digit numbers be AB and AC.
- AB AC
- (A10 B) (A10 C)
- (AA100) (A10(BC)) BC
- (AA)100 (A)(BC)10 (BC)
- For BC10, this reduces to
- A(A1)100 BC
- For A12, B8 and C2, this reduces to
- (12)(13)100 16
15616
22Quicking squaring of numbers that begin with 5
- 51 51
- (551)100 (11)
- 2601
- 57 57
- (557) 100 (77)
- 3249
- 59 59
- (559) 100 (99)
- 3481
- Proof Let the two digit number be written as 5D.
- 5D 5D
- (50 D) (50 D)
- (25 D)100 (DD)
23Quick squaring of two digit numbers
- Proof Let two digit numbers be AB.
- AB AB
- (A10 B) (A10 B)
- (AA)100 2(A10)B BB
- (AA)100 20(AB) (BB)
- For AB79, this reduces to 4900206381
-
49811260 6241 - For AB116, this reduces to 12100206636
-
121361320 13456
24Generalized Multplication Using Working Base
25- 23 3
- 24 4
- To determine the product, choose working base as
20 - add crosswise to obtain the left digits with
weight 20 - (23 4) (24 3) 27
- multiply the excess vertically to obtain the
right digits. - (3 4) 12
- 23 24 27 20 12
- 540 12
- 23 24 552
26- 723 23
- 724 24
- To determine the product, choose working base as
700 - add crosswise to obtain the left digits with
weight 700 - (723 24) (724 23) 747
- multiply the excess vertically to obtain the
right digits. - (23 24) 552
- 723 724 747 700 552
- 522900 552
- 723 724 523452
27- 783 -17
- 775 -25
- To determine the product, choose working base as
800 - add crosswise to obtain the left digits with
weight 800 - (783 - 25) (775 - 17) 758
- multiply the excess vertically to obtain the
right digits. - (17 25) 425
- 783 775 758 800 425
- 606400 425
- 783 775 606825
28- 532 32
- 472 -28
- To determine the product, choose working base as
1000/2 - add crosswise to obtain the left digits with wt.
1000/2 - (532 - 28) (472 32) 504
- multiply the excess vertically to obtain the
right digits. - (32) (-28) 896
- 532 472 (504 / 2)1000 (104 -1000)
- 252000 104 - 1000
- 532 472 251104