Title: Chapter 5' Bipolar Junction Transistors BJTs
1Chapter 5. Bipolar Junction Transistors (BJTs)
2Bipolar Junction Transistor
- Three terminal device
- Voltage between two terminals to control current
flow in third terminal - Invented in 1948 at Bell Telephone Laboratories
- Dominant until late 1980s
- Reliable under harsh operating conditions
- High frequency applications
- High speed designs
- High power applications
3- npn transistor
- n-type emitter (E) region, p-type base (B)
region, n-type collector (C) region - Two pn junctions (naming basis for bipolar
junction transistor) - Modes
- Active used for amplifier design
- Cutoff
- Saturation used for logic design
- Reverse active limited operation
4pnp transistor dual of npn transistor
5Active Mode of npn Transistor
6(No Transcript)
7(No Transcript)
8Circuit Models for Active Mode npn Transistor
9Practical Implementation
E and C are not symmetrical.
pnp transistors works dual to npn transistors
much in the same way PMOSFET works dual to
NMOSFET. (In this class, we will concentrate on
npn transistors.)
Skip Sections 5.1.4, 5.1.5, and 5.1.6 (pages 387
392)
10Circuit Symbols for npn Transistors
Biasing in active mode Directions of current flow
11(No Transcript)
12iC vBE Characteristics
Temperature Dependence
13Common Base Characteristics
In active region, vCB - 0.4 V
Base voltage is fixed at zero.
14Dependence of iC on Collector Voltage
15Circuit Models with Output Resistance ro
16Common Emitter Configuration
17(No Transcript)
18Common Emitter Saturation Model
Skip Section 5.2.5 (pages 406 407).
19Designing Linear Amplifiers (Active Region)
20Amplifier Gain
21(No Transcript)
22Graphical Analysis
23(No Transcript)
24To determine iB, iC and vCE, you need to use both
graphs.
25Quiescent point must be selected to give a
symmetric output swing.
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32Input part
10 V
RB1
RBB
RB1
VBB
10 V
RB2
_
_
VBB
VBB
_
RB2
33(No Transcript)
34Biasing BJT
- Determining a quiescent point for linearization
- Active mode operation
- Considerations
- Stable with respect to manufacturing parameters
(e.g., ro, ß) - Desired gains
- Acceptable output swing
35Biasing with Single Power Supply
- Fix VBE or IB.
- Output directly depends on ß
- Unstable with respect to temperature variation
36Addition of Degeneration Resistor
37(No Transcript)
38Biasing with Two Power Supplies
39Biasing with Feedback Resistor
40Biasing with Current Source
41Small Signal Analysis
- A quiescent point has been determined by biasing.
- Active mode operation
- Forward biasing for base-emitter junction by VBE
- Reverse biasing for collector-base junction by RC
and VCC
42(No Transcript)
43(No Transcript)
44The transistor performs as a voltage controlled
current source with gain gm when input varies by
10 mV or less.
45(No Transcript)
46(No Transcript)
47(No Transcript)
48Hybrid p Model
- Short circuit voltage sources
- Open circuit current sources
- Short circuit capacitors
49(No Transcript)
50T Model
51(No Transcript)
52(No Transcript)
53(No Transcript)
54Hybrid p Model with Early Effect
55Structure of Single Stage Amplifier
56Common Emitter Amplifier
57(No Transcript)
58(No Transcript)
59Common Emitter Amplifier with RE
60(No Transcript)
61(No Transcript)
62Common Base Amplifier
63(No Transcript)
64(No Transcript)
65Common Collector Amplifier
66(No Transcript)
67(No Transcript)
68(No Transcript)
69Skip Sections 5.8, 5.9 (Pages 485 503)
70Digital Logic Inverter
Logic 1 vI VCC ? vO VCEsat 0.2 V Logic 0
vI 0 ? vO VCC
Transistor is in saturation mode.
71vI vO Transfer Function
VCC 5 V RB 10 kO RC 1 kO ß 50
72(No Transcript)
73Skip Sections 5.10.2, 5.11 (Pages 505 515)