Apr 4 Exam: Two hours - PowerPoint PPT Presentation

About This Presentation
Title:

Apr 4 Exam: Two hours

Description:

X2=footballs. MAX 12x1 16x2. Consr (1)(rubber) 3x1 2x2 500 (2) (leather)4x1 5x2 800 ... Make footballs only if unit basketball profit is less than $12.80 ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 27
Provided by: GordonJ4
Learn more at: http://www.csun.edu
Category:
Tags: apr | exam | footballs | hours | two

less

Transcript and Presenter's Notes

Title: Apr 4 Exam: Two hours


1
Apr 4 Exam Two hours
  • Everyone takes exam 400 to 600PM Thur
  • Memo C-2 due Tues
  • Set 5 due Thur March 21

2
Answers to set 4
  • P 91, 5a
  • X1basketballs
  • X2footballs
  • MAX 12x1 16x2
  • Consr (1)(rubber) 3x12x2 lt 500
  • (2) (leather)4x1 5x2 lt 800

3
P 91, Problem 6
  • Continuation of problem 5
  • Intercepts (1) 0,250 and 167,0
  • (2) 0,160 and 200,0

4
x2
infeasible
0,250
0,160
A
(2)
128,57
B
infeasible
(1)
200,0
x1
167,0
C
(1
5
Corner pts
pt x1 x2 12x116x2
A 0 160 2560max
B 128.5 57.2 2457
C 167 0 2004
6
Exam format
  • Make 160 footballs for 2560 profit

7
Part (a) slack
  • CORNER PT A
  • (1)(rubber)302160320lt500, so
    slack500-320180
    (2)(leather)405160800,no slack
  • CORNER PT B zero slack
  • CORNER PT C(1)no slack
    (2)4167668lt800, slack 800-668132

8
Part(b) Sensitivity
  • Change in objective function
  • Section 1 new basketball profit13

9
Corner pts
pt x1 x2 13x116x2
A 0 160 2560
B 128.5 57.2 2590max
C 167 0 2171
10
Section 1 sensitive
  • Old optimum at pt A
  • New optimum at pt B
  • Start making basketballs

11
6bSection 2
  • New football profit 15

12
Corner pts
pt x1 x2 12x115x2
A 0 160 2400max
B 128.5 57.2 2400max
C 167 0 2004
13
6b Section 2 tie
  • Sensitive since optimum at A or B

14
6c constraint change
  • Right-hand side of rubber constraint
  • Section 1
  • Old 500
  • New 1000
  • New (1) 3x12x2lt 1000
  • New intercepts 0,500 and 333,0

15
x2
infeasible
0,500
0,160
A
(2)
New(1)
infeasible
infeasible
200,0
333,0
(1
16
Max profit
x1 x2 12x116x2
0 160 2560max
200 0 2400
17
6c Section 1insensitive
  • Original solution 160 footballs
  • New 160 footballs
  • Same optimum

18
6cSection 2
  • Right hand side of leather constraint
  • Old 800
  • New 1300
  • New (2) 4x15x2 lt 1300
  • New intercepts 0,260 and 325,0

19
0,260
infeasible
0,250
New(2)
infeasible
(1)
325,0
x1
167,0
C
(1
20
6c Section 2
x1 x2 12x116x2
0 250 4000max
167 0 2004
21
6cSection 2sensitive
  • While output mix is same as original (footballs
    only), we must check slack to see if input
    sensitive
  • Original problem pt A was optimum
  • Rubber slackgt0, no leather slack
  • New problem optimum on (1), so no rubber slack,
    but leather slackgt0, so input sensitive

22
Set 4(3)Sensitivity range(Algebra)
  • C1basketball profit
  • objective function
  • Z c1x116x2
  • X2 (1/16)Z (C1/16)x1

23
Constraint (1)
  • (1) 3x12x2 500
  • 2x2 500-3x1
  • x2 250 1.5x1
  • Set objective function coef of x1 constr
    (1) coef of x1
  • C1/16 1.5, so C1 24
  • Old C1 12, so C1 lt 24

24
Constraint (2)
  • (2) 4x15x2 800
  • X2 800/5 (4/5)x1
  • Set objective function coef of x1
  • constr (2) coef of x1
  • C1/16 4/5 .8
  • C1.816 12.8
  • Old C112, so C1 lt 12.8

25
Answer C1 lt 12.8
  • Answer must be in intersection of both ranges C1
    lt 24 and C1 lt 12.8
  • ------------------------------------24
  • ------------------12.8
  • -------------12old C1

26
interpretation
  • Make footballs only if unit basketball profit is
    less than 12.80
  • But if unit basketball profit exceeds 12.80,
    start making basketballs
  • Since current profit is 12.00, big change if
    unit profits increases by 80 cents
Write a Comment
User Comments (0)
About PowerShow.com