Title: Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO
1DNE21Results for Phases 1 2
DNE21Results for Phases 1 2
Expert Meeting on the Assessment of Contributions
to Climate Change UK Met Office, UK September 25
- 27, 2002
Expert Meeting on the Assessment of Contributions
to Climate Change
- Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO
- Research Institute of Innovative Technology for
the Earth (RITE)
2Interrelations in DNE21Model
3Outline of the Climate Change Model
- Simple climate change model was constructed based
on MAGICC (Model for the Assessment of Greenhouse
gas Induced Climate Change).
- Carbon circulation (both oceanic and
terrestrial), atmospheric concentrations of other
GHGs, their radiative forcings, temperature rises
of 4 representative points (north and south
hemispheres, ocean and land), sea level changes
of north and south hemispheres (energy balance of
upwelling stream among one dimensional 40 layers)
etc. are calculated. - Cooling effect of SOx aerosol is taken into
account.
4Calculating Steps in Climate Change Model
5Phase 1 Study
- Assumptions / Conditions
- Historical emissions data CDIAC database
- Future emissions scenario A2 of the IPCC SRES
- Timeframe 1765 to 2100
- Model parameters Reference case as specified in
TERMS OF REFERENCE
Cumulative CO2 emissions
6Results for Phase 1
CO2 concentration
CH4 and N2O concentrations
Radiative forcing (relative to 1990)
Global-average surface air temperature change
7Phase 2 Study
- Assumptions / Conditions
- Historical emissions data CDIAC database
- Future emissions scenarios A2, B1 and A1FI, of
the IPCC SRES (For CO2 emissions only. Non-CO2
GHGs emissions are assumed to be zero.) - Emissions start year 1991
- Emissions end years 2010, 2050 and 2100
- Countries/regions OECD90, REF, ASIA and ALM used
in the IPCC SRES. - Model parameters Reference case only (same as
Phase 1)
8Methodology of Attribution Calculation
Phase 2
- Calculate emission effect V(t) (e.g., temperature
change) of year t assuming that all the regions
emit anthropogenic CO2 according to Scenarios. - Calculate emission effect VR (t) assuming that
one of the regions R does not emit anthropogenic
CO2 during the period between the emissions start
year and an emissions end year. - Contribution of the region Rs emissions for the
period is the difference V(t) VR (t).
- Minimization of non-linearity error
- Avoidance of non-anthropogenic emission effect
NOTE
9CO2 Emissions Accumulated in Atmosphere
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 26
15 2050 35 11 33
21 2100 28 10
36 26
(2) Emissions end year 2050
(3) Emissions end year 2100
10CO2 Concentration
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 26
15 2050 35 11 33
21 2100 28 9
36 27
(3) Emissions end year 2100
(2) Emissions end year 2050
11Radiative Forcing of CO2
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 26
15 2050 35 11 33
21 2100 27 9
37 27
(3) Emissions end year 2100
(2) Emissions end year 2050
12Global-Average Temperature Change
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 26
15 2050 35 11 33
21 2100 27 9
37 27
(3) Emissions end year 2100
(2) Emissions end year 2050
13Global-Average Sea Level Rise
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 26
15 2050 35 11 33
21 2100 30 9
36 25
(3) Emissions end year 2100
(2) Emissions end year 2050
14CO2 Emissions Accumulated in Atmosphere
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 44 14 26
16 2050 30 9 31
30 2100 24 9
30 37
(2) Emissions end year 2050
(3) Emissions end year 2100
15CO2 Concentration
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 44 14 26
16 2050 29 9 31
31 2100 23 8
30 39
(3) Emissions end year 2100
(2) Emissions end year 2050
16Radiative Forcing of CO2
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 44 13 26
17 2050 29 9 31
31 2100 23 8
29 40
(3) Emissions end year 2100
(2) Emissions end year 2050
17Global-Average Temperature Change
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 44 14 26
16 2050 29 9 31
31 2100 23 8
30 39
(3) Emissions end year 2100
(2) Emissions end year 2050
18Global-Average Sea Level Rise
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 44 14 26
16 2050 30 9 31
30 2100 25 9
30 36
(3) Emissions end year 2100
(2) Emissions end year 2050
19CO2 Emissions Accumulated in Atmosphere
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 44 14 26
16 2050 30 9 31
30 2100 24 9
30 37
(2) Emissions end year 2050
(3) Emissions end year 2100
20CO2 Concentration
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 27
14 2050 30 12 39
19 2100 25 10
38 27
(3) Emissions end year 2100
(2) Emissions end year 2050
21Radiative Forcing of CO2
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 27
14 2050 30 12 39
19 2100 24 10
39 27
(3) Emissions end year 2100
(2) Emissions end year 2050
22Global-Average Temperature Change
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 27
14 2050 30 12 39
19 2100 25 10
38 27
(3) Emissions end year 2100
(2) Emissions end year 2050
23Global-Average Sea Level Rise
Phase 2 results
(1) Emissions end year 2010
Attribution () in 2100
Emissions end year
OECD90 REF ASIA ALM
2010 45 14 27
14 2050 31 12 39
18 2100 26 10
39 25
(3) Emissions end year 2100
(2) Emissions end year 2050