Completion Time Scheduling - PowerPoint PPT Presentation

About This Presentation
Title:

Completion Time Scheduling

Description:

Completion Time Scheduling. Notes from Hall, Schulz, Shmoys and Wein, ... 1 machine conversion. Let Cpi denote any preemptive values ... Nonpreemptive online: ... – PowerPoint PPT presentation

Number of Views:18
Avg rating:3.0/5.0
Slides: 19
Provided by: erict9
Learn more at: http://www.cse.msu.edu
Category:

less

Transcript and Presenter's Notes

Title: Completion Time Scheduling


1
Completion Time Scheduling
Notes from Hall, Schulz, Shmoys and Wein,
Mathematics of Operations Research, Vol 22,
513-544, 1997
2
One LP formulation for 1SwjCj
3
Other ways to bound Cj
Smiths rule Scheduling jobs by wj/pj is
guaranteed to be optimal
wj
pj
4
Think of all jobs as having wj pj
Smiths rule Any order is then equivalent since
wj/pj 1 for all jobs
pj
pj
5
(No Transcript)
6
1prec SwjCj
  • LP minimize SwjCj
  • Subject to
  • Ck Cj pk (if job j precedes job k)
  • Let Ci denote the LP optimal values
  • Let Ci denote the true optimal values

7
Algorithm and Analysis
  • Let Ci denote the LP optimal values
  • Let Ci denote the true optimal values
  • Greedy Algorithm
  • Solve LP for Ci
  • Solvable in poly time despite exponential size
  • Prioritize the jobs by Ci values
  • Let Gi be the resulting completion times
  • Key result Gi 2Ci 2Ci
  • From Lemma 2.1

8
1rj, prec SwjCj
  • LP minimize SwjCj
  • Subject to
  • Cj rj pj (all jobs)
  • Ck Cj pk (if job j precedes job k)
  • Let Ci denote the LP optimal values
  • Let Ci denote the true optimal values

9
Algorithm
  • Let Ci denote the LP optimal values
  • Let Ci denote the true optimal values
  • Greedy Algorithm
  • Solve LP for Ci
  • Solvable in poly time despite exponential size
  • Prioritize the jobs by Ci values
  • Let Gi be the resulting completion times

10
Analysis
  • Key result Gi 3Ci 3Ci
  • Fix j and define S 1, , j
  • Gj rmax(S) p(S)
  • Cj rmax(S)
  • Thus Gj Cj p(S) 3Cj
  • From Lemma 2.1

11
Extending to parallel machines
12
Extending to parallel machines
13
Prj SwjCj
  • LP minimize SwjCj
  • Subject to
  • Cj rj pj
  • Let Ci denote the LP optimal values
  • Let Ci denote the true optimal values

14
Algorithm
  • Let Ci denote the LP optimal values
  • Let Ci denote the true optimal values
  • Greedy Algorithm
  • Solve LP for Ci
  • Solvable in poly time despite exponential size
  • Prioritize the jobs by Ci values
  • Let Gi be the resulting completion times

15
Analysis
  • Key result Gi (4-1/m)Ci 4Ci
  • Fix j and define S 1, , j
  • Gj rmax(S) 1/m p(S j) pj
  • rmax(S) 1/m p(S) (1-1/m)pj

16
Preemption vs Nonpreemption
  • Method for converting preemptive schedules into
    non-preemptive schedules
  • Effective for minimizing Cj objectives
  • Prioritize jobs by their preemptive completion
    times Cjp
  • Generalization When a of the job is complete
  • List schedule these jobs nonpreemptively using
    this priority

17
1 machine conversion
  • Let Cpi denote any preemptive values
  • Let Cni denote the nonpreemptive values
  • Cni 2 Cpi

CPj

18
1rj SCj
  • With preemption, we have an optimal solution,
    SRPT
  • Nonpreemptive online
  • Simulate SRPT and when a job is completed in
    SRPT, start it in the non-preemptive (or add it
    to the list to start)
Write a Comment
User Comments (0)
About PowerShow.com