Title: Nuclear break-up of exotic nuclei
1Nuclear break-up of exotic nuclei
I History of the towing mode in stable
nuclei the 40Ar58Ni _at_ 40 MeV/A case II The TDSE
calculation III The case of the 11Be break-up
IV The extension to borromean nuclei V
Conclusions - Perspectives
Jass
2Inelastic Channel-projectileejectile
A
A
A
A
A
Target
A1
Projectile
A
A
A
A
Inelastic Scattering GR and multiphonons
Knock Out
Pick-up Break-up
New mechanism?
1 emitted particle
Jass
1 or several emitted particle(s)
3Angular distribution of nucleon emitted in
58Ni(40Ar, 40Ar n or p)
Jass
4Action
t
Jass
5What happens when a force acts on a mass
for a given period of time ?
Action
d ? (ro . A1/3) 4 fm
d
E 40 MeV/A
tc
vp
vp 1023 fm.s-1
.
.
F
x . tc xo
tc 4. 10-23 s
m
F 15 MeV.fm-1
3 fm
15 . 9 . 1046
.4. 10-23 6.1022 fm.s-1
900
Right order of magnitude!
Jass
6Nuclear break-up of exotic nuclei
I History of the towing mode in stable nuclei
the 40Ar58Ni _at_ 40 MeV/A case II The TDSE
calculation III The case of the 11Be break-up
IV The extension to borromean nuclei V
Conclusions - Perspectives
Jass
7Evolution of a one-particle wave function via
the resolution of time dependent Schrödinger
J.A. S. D. Lacroix Ph. Chomaz
Static solutions
H
(
r
)
H ? ? . ????? diagonalization ???eigen
states, eigen values
Exact up to 2sd order
Jass
D.Lacroix et al. Nucl. Phys. A658 (1999) p273
8Resolution of time dependent Schrödinger
equation on a mesh non perturbative calculation
- The calculation includes
- TDSE for a wave function in a moving potential
- diffraction (refraction!) through the nuclear
potential - single particle excitations to unbound states
- n-core excitations (!!)
-  shaking  of the core (Coulomb classical
trajectory)
proj
target
proj
- The calculation does not include
- spin-orbit, pairing
- No structure info
- core or target excitations (not excluded either)
- nucleon-nucleon dissipation
- quantum relative motion
- energy conservation
target
Jass
9Evolution of a wave function via the resolution
of time dependent Schrödinger
t 0
t 130 fm/c
Initial wave function
Jass
10y
Initial Density Probability in the target
potential at rest in the lab frame.
Evolution
x
Density probablility after the projectile has
passed
FFT
py
ds/dW (q)
Fourier transform of the former density
probability.
px
Jass
Angular distribution of the emitted particle
1158Ni(40Ar,40Arp or n)
2p calculation, b from 10 to 12 fm Plus flat
background
50
py
50
2s
px
Jass
12Nuclear break-up of exotic nuclei
I History of the towing mode in stable nuclei
the 40Ar58Ni _at_ 40 MeV/A case II The TDSE
calculation III The case of the 11Be break-up
IV The extension to borromean nuclei V
Conclusions - Perspectives
Jass
1311Be break-up calculations
WS potential to bound the 2s by 0.5 MeV
Density of 2s
2000
13 fm
Does not change when using N.Vinh Mau potential
80
15
1
Need to use a Coulomb trajectory
Weakly bound neutron
Large Coulomb break up
Runge Kutta r(tdt) r(t-dt)
2.dt.p(t)/m p(t) p(t-2dt) 2.dt.F(t-dt)/m
Imaginary time evolution extract a
stable eigen state (M.Fallot...) for the
cartesian mesh
Jass
Interpolation ...
14Neutron angular distributions Au,Ti,Be (11Be,
10Be n) _at_ 41 Mev/A Data from R.Anne et
al.,Nucl.Phys. A575 (1994) 125
lab
lab
lab
neutron
neutron
neutron
M.Fallot, J.A.Scarpaci, D.Lacroix, Ph. Chomaz et
J.Margueron, Nuclear Physics A700 (2002) 70
Large b (Coulomb break-up) forward peaked
emitted neutron Small b (nuclear break-up)
responsible for neutrons emitted at large angle
The nuclear break-up is fully reproduced by the
interaction of the particle with the mean field
of the target - no need of n-n interaction.
Jass
1511Be a halo nucleus
n
- Neutron bound by 0.504 MeV
- GS (Jp 1/2)
- GSgt a 2s1/2 ? 0gt b 1d5/2 ? 2gt
10Be
a2 (S2s) et b2 (S1d) spectroscopic factors
10Be 2 state of b20.74 Ref Auton et al. NP A
322(1970) 305
g
Eg3.37 MeV
Jass
16GANIL
SISSI
- Primary beam of 13C _at_ 75 A.MeV
- Secondary beam of 80000 11Be/s _at_ 41 A.MeV.
SPEG
Jass
17Experimental set-up
Experimental set-up results
Jass
18Experimental set-up results
TDSE Calculation
Jass
19The G.S. of 11Be
GSgt a 2s1/2 ? 0gt b 1d5/2 ? 2gt
S2s 85-36 S1d ?
Transfer reaction p(11Be,10Be)d GANIL
Fortier et al., PL B 461(1999)22-27
Break-up reactions (11Be,10Be) _at_ 60 MeV/u and
eikonal models
T. Aumann et al., P.R.L.84 (2000) 35-38
Break-up reactions (11Be,10Be) _at_ 520 MeV/u Palit
et al., PR. C 68, 034318 (2003)
nucl.
DWBA excitation and break-up
Large diversity of S2s
elect.
B.Zwieglinski et al. Nucl.Phys.A315, 124
(1979) N.K.Timofeyuk et al. P.R.C59, 1545 (1999)
Our work
20Nuclear break-up of exotic nuclei
I History of the towing mode in stable nuclei
the 40Ar58Ni _at_ 40 MeV/A case II The TDSE
calculation III The case of the 11Be break-up
IV The extension to borromean nuclei V
Conclusions - Perspectives
Jass
21Study of neutron correlationswith nuclear
break-up
- 6He is an archetype of a Borromean nucleus high
intensities most suitable
nucleus to investigate new experimental approach
and develop new theoretical tools
Di-neutron configuration
Cigar configuration
Zhukov et al., Phys. Rep. 231 (1993) 151
three-body description expansions on
hyperspherical harmonics coordinate space
Faddeev approach
Jass
22Some experiments on 6He
- Transfer reactions 4He( 6He,6He) 4He
- dominated by di-neutron conf
- Yu.Oganessian et al. (1999) Dao T.Khoa and
W.von Oertzen (2004) - Radiative capture 6He(p,?)x _at_ 40 MeV/A - no ?
t decay - large distance between the two neutrons (cigar
like) - E.Sauvan et al. (2001)
- Coulomb break-up6He C, Pb _at_ 30-60 MeV/A
- large distance between the two neutrons (cigar
like) - Invariant mass ? interferometry depending on
impact parameter cuts - G.Normand et al. (2004) rn-n 7.7 fm, 9.4 fm
- F.M.Marques et al. (2000) rn-n 5.9 fm
- _at_ 240 MeV/A 6,8He
Pb _at_ 700 MeV/A - L.V.Chulkov et al. (2005) QFS
dominates - low lying 1- states 3-6 MeV ? core plus 2 or 4
neutrons - 8He small 6He 2n
No consensus on the n-n configuration Open to
more experiments
Jass
23Neutron angular emission
extension of TDHF (TDDM) (M.Assie-D.Lacroix)
Jass
G.Normand, PhD thesis 2004 F.M.Marques, PR C64,
2001
24Set-up
High neutron angular coverage up to 90 neutron
wall 20 additional detectors Si detector for
4He covering from 5 to 15
Additional neutron detectors
n
Faraday cup
4He
6He 20 MeV/u
5 mg/cm2 Pb target
Si det.
n
65
Neutron wall
25Nuclear break-up of exotic nuclei
I History of the towing mode in stable nuclei
the 40Ar58Ni _at_ 40 MeV/A case II The TDSE
calculation III The case of the 11Be break-up
IV The extension to borromean nuclei V
Conclusions - Perspectives
- Reaction mechanism plays an important role in
the break-up - towing Mode, a spectroscopic tool
- need of good theoretical description to infer
spectroscopic factors - Development required for two-particle wave
function evolution - extension of TDHF - Marlène Assié, Denis Lacroix
- Possible application to cluster studies!
- observation of ? emission in 40Ca break-up
Jass