Title: Aucun titre de diapositive
1Philippe Naveau Paul Poncet Dan Cooley
Spatial Extremes
2Outline
- Geostatistics
- (2) Extreme value theory the bivariate case
- (3) Extreme value theory the multivariate case
- (5) Conclusions
3Classical Questions in Geostatistics
How to take into account the distance between
points when modeling spatial uncertainty? How to
perform spatial interpolation?
(Chiles and Delfiner 1999, Stein 1999, Cressie
1993, Wackernagel 2003)
4A Classical Tool
Z(x) a zero-mean spatial stationary process with
finite covariance
The VARIOGRAM
?(h) 1/2 ? EZ(xh)-Z(x)2
5New Questions in Geostatistics
How to take into account the distance between
points when modeling spatial extreme events? How
to perform spatial interpolation for extreme
events?
(Coles et al., Smith et al., Schlather et al.,
etc)
6Outline
- Geostatistics
- (2) Extreme value theory the bivariate case
- (3) Extreme value theory the multivariate case
- (4) Conclusions
7MAXIMA The Generalized Extreme Value
distribution
P(X lt x) exp(-1/u(x))
with u(x) 1? (x-?)/?1/?
8Bivariate extremes
What is the 2D-GEV?
Apply the principle of stability!!!
GEV case Maximum of 2 GEV vectors is still
GEV MAX-STABLE BIVECTORS
Find F such that F(u,v) Fm(mu,mv)
9Bivariate case with unit Frechet
margins P(Xltu)P(Yltu)exp(-1/u)
P(Xltu, Yltv)exp(-V(u,v))
with V(u,v)2 ?max(w/u,(1-w)/v)dH(w) and H
distribution on 0,1 with mean 0.5
Special case vu P(Xltu, Yltu) exp(-V(u,u))
exp(-V(1,1)/u) exp(-1/u)V(1,1)
P(Xltu)?
(Embrecht et al.,1997)
10What is ?? gt the extremal coefficient
P(Xlt u, Ylt u)P?(Xlt u)
? 1 (X,Y) complete dependence ? 2 (X,Y)
independence ? does not completely characterize
the bivariate dependence
11Madogram ? 1/2 ? EX-Y
X-Y2max(X,Y)-(XY)
(X,Y) bivariate extreme vectors if EX finite
? 1/2 ? EX-Y EXF?-1(X) - EX with F(t)
P(Xltt)P(Yltt)GEV or GPD
(Greenwood, Hosking Wallis)
12Estimating the extremal coefficient
Recall u(x) 1? (x-?)/?1/?
Bivariate-GEV case
?u(? ?/?(1- ?))
13Estimating the extremal coefficient in the I.I.D.
bivariate case
Recall u(x) 1? (x-?)/?1/?
Bivariate-GEV case
?nu(? ?n/?(1- ?))
with ?n ?Xi-Yi/2n
14Estimated bias and variance of ?n with ?1.5
Starting samples bi-GEV(?.5, ?.5, ?)
?-0.2
?0.2
?0.8
15Outline
- Geostatistics
- (2) Extreme value theory the bivariate case
- (3) Extreme value theory the multivariate case
- (4) Conclusions
16Simple assumptions in Geostatistics
Z(x) a spatial stationary process
17Geostatistics extremes
Extremes Z(x) a spatial stationary and
max-stable process
Example Maximum annual precipitations
(Schlather and Tawn 2002,2003)
18A example a field of extreme values
What is the spatial structure?
19The first-order variogram
The Madogram
?(h) 1/2 ? EZ(xh)-Z(x)
The natural estimator of ?(h)
?Z(xi)-Z(xj)/2N with N nb of all pairs s.t.
xi - xj h
20The first-order variogram
The Madogram
?(h) 1/2 ? EZ(xh)-Z(x)
0
21Constructing max-stable processes
Apply the principle of stability!!!
GEV case Maximum of GEV processes is still
GEV MAX-STABLE PROCESSES
Find F such that F(u1,, un) Fm(mu1,,mun)
(Fougeres,2002)
22-2logP(Z(0)ltt,Z(h)lts)(1/t1/s)1(1-21?(h)st/(s
t)20.5
Frechet Marginal
23Extremal coefficient ?(h)11-1?(h)/20.5
- - 75 locations
- 300 simulations
- ?(h)exp(- h/40)
24Extremal coefficient ?(h)11-1?(h)/20.5
- - 75 locations
- 300 simulations
- ?(h)exp(- h/40)
?(h)
h
25Extremal coefficient ?(h)11-1?(h)/20.5
- - 75 locations
- 300 simulations
- ?(h)exp(- h/40)
?(h)
h
26-logP(Z(0)ltt,Z(h)lts)?(a/2log(t/s)/a)/s?(a/2log
(s/t)/a)/t
with a ht?-1h
Frechet Marginal
Smiths field
27Extremal coefficient ?(h)2?(ht?-1h/2)
- - 75 locations
- 300 simulations
- ?(h)exp(- h/40)
?(h)
h
28Outline
- Geostatistics
- (2) Extreme value theory the univariate case
- 2-i Lichenometry
- 2-ii Ice core volcanic signals
- (3) Extreme value theory the bivariate case
- (4) Extreme value theory the multivariate case
- (5) Conclusions
29Conclusions
- EVT There exist mathematically sound tools to
deal with extremes and exceedances - (2) Spatial extremes Madogram captures some
dependence in max-stable fields
Work in progress and future research
- Spatial extremes Developing spatial
interpolation schemes apply to downscaling of
extremes
30A special class of max-stable process
Z(x)max?j g(sj,x) jgt0
with ?j magnitude of the j-th storm sj type
of storm g(.,.) shape of the event (?j, sj)
points of a Poisson process with intensity d?
?(ds)/?2
(Schlather and Tawn, 2003, de Haan 1984, Gine et
al., Resnick et al.)
31Multivariate extremes
Recall Bivariate case
-log P(Xltu, Yltv)2 ?max(w/u,(1-w)/v)dH(w)
-log P(Z(x)ltz(x),?x)?maxg(s,x)/z(x) ?x?(ds)
-log P(Z(0)ltz, Z(h)ltz) ?g(s,0)?g(s,h)?(ds) /z
(Schlather and Tawn, 2003)
32Classical assumptions in Geostatistics
Z(x) a spatial stationary process with finite
covariances
Example Mean annual temperatures
33Unit Frechet Margins
P(Xltu, Yltv)exp(-V(u,v))
with V(u,v)2 ?max(w/u,(1-w)/v)dH(w) and H
distribution on 0,1 with mean 0.5
34Bivariate extremes
P(Xltx, Ylty)exp(-V(u(x),u(y)))
with V(u,v)2 ?max(w/u,(1-w)/v)dH(w) and H
distribution on 0,1 with mean 0.5
and u(x) 1? (x-?)/?1/?
35Limitations of the variogram
- Not adapted to heavy-tail distributions
- (2) Spatial dependence may not well be
- represented by the covariance for
- extreme fields
36Notations
The Madogram in the spatial case
?(h) 1/2 ? EZ(xh)-Z(x)
The Madogram in the bivariate case
? 1/2 ? EX-Y
with XY in distribution
37What is the relationship between madogram
extremes?
X-Y 2 max(X,Y) - (XY)
38Constructing valid madograms
?(h) 1/2 ? EZ(xh)-Z(x)2
- Variogram parametrization
- Exponential, Matern family, etc
- Semi-definitive positive, etc
Whats about the madogram?
39Extremal coefficient properties
?(h)EZ(xh)-Z(x)/2
If ?(h) is a valid extremal function, then 2-
?(h) is semi-definite positive ?(h) is not
differentiable at 0 If ?(h) such that 1-2(?(h)
-1)2 semi-definite positive Then ?(h) is a valid
extremal function
(Matheron 1987, Schlather and Tawn 2003)
40Ordinary kriging
A linear predictor for Z(x0) p?(Z(x0)) ? ?i
Z(xi)
41Finding the weights ?i
Minimizing EZ(x0)- p?(Z(x0))2 under the
constraint ? ?i 1
42Finding the weights ?i
Minimizing ?Z(x0),??iZ(xi) under the
constraint ? ?i 1
43Ordinary kriging for extremes
p?(Z(x0)) ??i Z(xi)
44Finding the weights ?i
Minimizing ?Z(x0), p?(Z(x0)) under the
constraint ? ??ig(s,xi)?i1,..,n ?(ds) 1
45Finding the weights ?i
Minimizing ?Z(x0), p?(Z(x0)) under the
constraint ? ??ig(s,xi)?i1,..,n ?(ds) 1
46Finding the weights ?i
Minimizing ?Z(x0), p?(Z(x0)) under the
constraint ? ??ig(s,xi)?i1,..,n ?(ds) 1
?Z(x0),??iZ(xi) ? max?(xs-xt) r,s 1,,n
Schlathers model ?(xs-xt)11-?(xs-xt)
(?s?t)2/?s?t0.5
47SUMMARY
GEV, GPD
Gaussian
1st order Variogram
2nd order Variogram
Correlation coefficient
Extremal coefficient
48Extremal coefficient ?(h)11-1?(h)/20.5
?(h)
- - 75 locations
- 300 simulations
- ?(h)exp(- h2/40)
h
49A Link between Ages and Diameters
GLOBAL MODEL!!
GEV Parameters Scale constant Shape
constant Location time dependent
50Estimated bias and variance of ?n
Starting samples bi-GEV(?.5, ?.5, ?)
?
n
?
GEV
Gumbel
Weibull
51Madogram Bivariate extremes
Bivariate-GEV case
If ??0, then ? ? ?(1- ?) (?? -1)/?
If ?0, then ? ? ln?
Bivariate-GP case
If ??0, then ? ?/? ?(1 ?) ?(1- ?) /?(1- ?
?)-1/(1- ?)
52Estimating the extremal coefficient in the I.I.D.
bivariate case
Our Approach
Step 1 Estimate (?,?,?) Step 2 Transform
variables to have GEV margins with ?lt0.5 Step
3 Estimate ? with ?