Title: A1258150714iAwnz
1Quantum teleportation between light and matter
Eugene Polzik
Niels Bohr Institute Copenhagen University
2Quantum mechanical wonders (second wave)
Quantum objects
cannot be measured
cannot be copied
exist in superposition and entangled states
Quantum Information Science
- Communications with
- absolute security
- Computing with unprecedented speed
- Teleportation of objects (or at least of their
quantum states)
3Teleportation a la Star Trek, whats the problem?
Problem Matter cannot be reversibly converted
into light!
Question If matter if not teleported, then what
is being transmitted?
Answer information - is what should be
transmitted
4Problem electrons, atoms and humans cannot
be described as a set of classical
bits 00111010111000010101
5The more precisely the position is determined,
the less precisely the momentum is known in this
instant, and vice versa. --Heisenberg 1927
Blegdamsvej 17, Copenhagen
Noncommuting operators
Heisenberg in 1927.
6Challenge of Quantum Teleportation transfer
two non-commuting operators from one system onto
another (Heisenberg picture)
equivalent to Transfer an unknown quantum state
from one system onto another (Schördinger
picture)
Teleportation experiments so far Light onto
light Innsbruck(97), Rome(97), Caltech(98),
Geneva, Tokyo, Canberra Single ion onto single
ion Boulder (04), Innsbruck (04)
7Teleportation cartoon
Classical communication
entangled objects
done!
8Physics of entanglement
Interaction?entanglementconservation of
energy momentum angular momentum
0
-1
1
Single atom/ion Ann Arbor
9Einstein-Podolsky-Rosen (EPR) entanglement
Canonical operators position/momentum
or real/imaginary parts of
the e.-m. field amplitude, etc
10Teleportation principle (canonical operators)
L.Vaidman
11Canonical operators for light
Coherent state
12Canonical operators of light Y, Q can be
efficiently measured
Polarizing Beamsplitter 450/-450
Strong field A(t)
x
Quantum field a -gt Y, Q
Polarizing cube
13Quantum tomography with many copies of a state
Coherent state
14Canonical quantum variables for an atomic
ensemble
4
3
15Light modes and atomic levels
4
3
16Atoms ground state Caesium Zeeman sublevels
4
3
17Object gas of spin polarized atoms at room
temperature
Optical pumping with circular polarized light
18Quantum Noise of Atomic Spin
19Classical benchmark fidelity for teleportation
of coherent states
Atoms
Best classical fidelity 50
K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac,
Phys. Rev. Lett. 94,150503 (2005),
20October 5, 2006
J.Sherson, H.Krauter, R.Olsson, B.Julsgaard,
K.Hammerer, I.Cirac, and E.Polzik, Nature 443,
557 (2006).
21(No Transcript)
22Teleportation of light onto a macroscopic atomic
sample
Pulse to be teleported ltngt0200 photons
Atoms target object of teleportation
23Teleportation step 1 entanglement
24LightAtoms entangling Hamiltonian
Off-resonant interaction entangles light and
atoms
D 800 MHz
6P3/2
W 0.3 MHz
6S1/2
magnetic field
25Entanglement via forward scattering of light
26Addition of a magnetic field couples light to
rotating spin states
y
z
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
27Teleportation step 2 Bell measurement
28Polarization homodyning - measure Y (or Q)
Polarizing Beamsplitter 450/-450
29q
y
30Teleportation step 3 classical communication
31322 kHz RF field
Magnetic shields
32pulse sequence
Teleportation experiment
feedback
Teleported operators
pump
4ms
2ms
verifying
entangling
Bell measurement
33Teleportation step 4 verification
34verification
XAJz
PAJy
35Teleportation of coherent state n 500
36Teleportation of a vacuum state of light
37Teleportation of a coherent state, n 5
38Raw data atomic state for ltngt5 input
photonic state
Reconstructed teleported state, F0.580.02
39Experimental quantum fidelity versus best
classical case
Upper bound on ltngt 1000 due to gain
instability
F quantum
F classical
Anticipated qubit fidelity Fqubit 72
(with feasible imperfections)
Optimal gain
40(No Transcript)
41Summary
- Teleportation between two mesoscopic objects of
different nature - a photonic pulse and an atomic ensemble
demonstrated - Distance 0.5 meter, can be increased (limited
mainly - by propagation losses)
- Extention to qubit teleportation possible
- Fidelity can approach 100 with more
sophisticated measurement - procedure plus using squeezed light as a probe
J. Sherson, H. Krauter, R. K. Olsson, B.
Julsgaard, K. Hammerer, I. Cirac, and ESP
quant-ph/0605095 , Nature, October 5, 2006
42Outlook June 2001
Scientists teleport two different objects POSTED
1113 GMT (1913 HKT), October 5, 2006
First Teleportation Between Light and Matter
J. Sherson, H. Krauter, R. K. Olsson, B.
Julsgaard, K. Hammerer, I. Cirac, and ESP
quant-ph/0605095 , Nature, October 5, 2006
Wed Oct 4, 106 PM ET LONDON (Reuters) Quantum
information teleported from light to matter
43NBI - QUANTOP 2006