Average Fe Ka emission from distant AGN - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Average Fe Ka emission from distant AGN

Description:

Average Fe Ka emission from distant AGN. Amalia Corral. IFCA(Santander)/OAB(Milano) ... Distant AGN - average or stack many spectra together: ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 28
Provided by: amalia9
Category:

less

Transcript and Presenter's Notes

Title: Average Fe Ka emission from distant AGN


1
Average Fe Ka emission from distant AGN
  • Amalia Corral
  • IFCA(Santander)/OAB(Milano)
  • M.J. Page MSSL (UCL), UK
  • F.J. Carrera, X. Barcons, J. Ebrero IFCA
    (CSIC-UC), Spain
  • S. Mateos, J.A. Tedds, M.G. Watson University of
    Leicester, UK
  • A. Schwope, M. Krumpe Astrophysikalisches
    Institut Postdam, Germany

X-ray Universe 2008, Granada, 27th May 2008
2
Introduction
  • XRB (X-Ray Background) is known to be composed of
    discrete sources, most of them are AGN.
  • XRB synthesis models, ingredients
  • - AGN intrinsic column density and acretion
    rate distribution and their evolution as a
    function of Luminosity and redshift.
  • - Average radiative efficiency of accretion
    onto Supermassive Black Holes -gt Measure from Fe
    line relativistic profile.

3
Previous Results
  • Local samples
  • EW(relativistic) 100-200 eV (Guainazzi06,
    Nandra07)
  • Distant AGN -gt average or stack many spectra
    together
  • EW(relativistic) 400 (type1) - 600(type2) eV
  • (Streblyanska05,Brusa05)

4
Our sample
  • AGN from the AXIS (An International XMM-Newton
    Survey) and XWAS (XMM-Newton Wide Angle Survey)
    medium surveys (average flux 5x10-14 erg cm-2
    s-1) .
  • Optical spectroscopic identifications (gt80 counts
    0.2-12 keV)
  • Type 1 AGN 606 sources
  • Type 2 AGN 117 sources

5
Our sample
  • Sample selection
  • Individual spectra gt 80 counts in 0.2-12 keV

6
Averaging method
  • Fit an absorbed power law above 1 keV rest-frame
    and unfold the un-grouped spectra best-fit
    model.
  • Correct for Galactic Absorption.
  • Shift to rest-frame.
  • Normalize using the 2-5 keV rest-frame band.
  • Rebin to 1000 final counts/bin.
  • Average.

7
Results
Type 1 AGN gt 200000 counts
Type 2 AGN 30000 counts
Fit simple power law in 2-10 keV Type 1
G1.920.02 Type 2
G1.440.02
8
Results
Type 1 AGN gt 200000 counts
Type 2 AGN 30000 counts
Broad relativistic profile not clearly present
9
Simulations
  • 100 simulations (best-fit model) per real
    spectrum including Poisson counting noise and
    keeping the same 2-8 keV observed flux, exposure
    time and calibration matrices as for the real
    data.
  • Significance contours by removing the 32 (1s
    level) and 5 (2s level) extreme values.

10
Results
11
Results
12
Spectral fit
  • Baseline model
  • 100-simulations continuum mixture of absorbed
    power laws.
  • Narrow emission line.

13
Spectral fit Type 1 AGN
  • Best-fit model Baseline model plus neutral
    reflection
  • Egaus 6.360.05 keV
  • sgaus 8080 eV
  • EWgaus 9030 eV
  • i 6020º
  • R0.50.20

14
Spectral fit Type 1 AGN
  • Best-fit model Baseline model plus neutral
    reflection
  • Egaus 6.360.05 keV
  • sgaus 8080 eV
  • EWgaus 9030 eV
  • i 6020º
  • R0.50.20

15
Spectral fit Type 1 AGN
  • Best-fit model Baseline model plus neutral
    reflection
  • Egaus 6.360.05 keV
  • sgaus 8080 eV
  • EWgaus 9030 eV
  • i 6020º
  • R0.50.20

EW(broad relativistic line) lt 400 eV at 3s
confidence level
16
Spectral fit Type 2 AGN
  • Model Baseline model plus neutral reflection
  • Egaus 6.360.07 keV
  • sgaus 8060 eV
  • EWgaus 7030 eV
  • i lt 80
  • R gt 0.7

17
Spectral fit Type 2 AGN
  • Model Baseline model plus neutral reflection
  • Egaus 6.360.07 keV
  • sgaus 8060 eV
  • EWgaus 7030 eV
  • i lt 80
  • R gt 0.7

18
Spectral fit Type 2 AGN
  • Model Baseline model plus Laor line
  • Egaus 6.360.07 keV
  • Elaor 6.7 keV
  • sgaus 8060 eV
  • EWgaus 7040 eV
  • EWlaor 300 eV
  • i 60º

19
Spectral fit Type 2 AGN
  • Model Baseline model plus Laor line
  • Egaus 6.360.07 keV
  • Elaor 6.7 keV
  • sgaus 8060 eV
  • EWgaus 7040 eV
  • EWlaor 300 eV
  • i 60º

20
Spectral fit Type 2 AGN
  • Model Baseline model plus Laor line
  • Egaus 6.360.07 keV
  • Elaor 6.7 keV
  • sgaus 8060 eV
  • EWgaus 7040 eV
  • EWlaor 300 eV
  • i 60º

Neutral reflection and Relativistic line give the
same fit
21
Type 1 AGN sub-samples
  • Number of counts 2-10 keV gt 2x105 allow us to
    test evolution with different parameters by
    dividing the sample in 3 subsamples of equal
    quality (i.e. number of total counts) redshift,
    flux and luminosity.
  • We found no dependence for the emission features
    on redshift or flux.
  • Dependence on Luminosity -gt Iwasawa- Taniguchi
    effect?

22
Type 1 AGN sub-samples
L(0.5-2 keV) (erg s-1) EW narrow line (eV)
1x1042 2x1044 19050
2x1044 6x1044 15080
6x1044 6x1046 5040
23
Conclusions
  • Narrow emission line significatively detected in
    Type 1 and Type 2 AGN average spectra. E 6.4
    keV, EW 100 eV.
  • Type 1 AGN No compelling evidence of a Broad
    component in the average spectrum. Continuum
    features best represented by a reflection
    component. Relativistic line upper limit EWlt400
    eV (3s confidence).
  • Iwasawa-Taniguchi effect for narrow line
    component marginally detected.
  • Type 2 AGN Statistics insufficient to
    distinguish between a relativistic line and a
    reflection component.

24
Conclusions
  • Narrow emission line significatively detected in
    Type 1 and Type 2 AGN average spectra. E 6.4
    keV, EW 100 eV.
  • Type 1 AGN No compelling evidence of a Broad
    component in the average spectrum. Continuum
    features best represented by a reflection
    component. Relativistic line upper limit EWlt400
    eV (3s confidence).
  • Iwasawa-Taniguchi effect for narrow line
    component marginally detected.
  • Type 2 AGN Statistics insufficient to
    distinguish between a relativistic line and a
    reflection component.

25
Conclusions
  • Narrow emission line significatively detected in
    Type 1 and Type 2 AGN average spectra. E 6.4
    keV, EW 100 eV.
  • Type 1 AGN No compelling evidence of a broad
    component in the average spectrum. Continuum
    features best represented by a reflection
    component. Relativistic line upper limit EWlt400
    eV (3s confidence).
  • Iwasawa-Taniguchi effect for narrow line
    component marginally detected.
  • Type 2 AGN Statistics insufficient to
    distinguish between a relativistic line and a
    reflection component.

26
Conclusions
  • Narrow emission line significatively detected in
    Type 1 and Type 2 AGN average spectra. E 6.4
    keV, EW 90 eV.
  • Type 1 AGN No compelling evidence of a broad
    component in the average spectrum. Continuum
    features best represented by a reflection
    component. Relativistic line upper limit EWlt400
    eV (3s confidence).
  • Iwasawa-Taniguchi effect for narrow line
    component marginally detected.
  • Type 2 AGN Statistics insufficient to
    distinguish between a relativistic line and a
    reflection component.

27
THANK YOU
Write a Comment
User Comments (0)
About PowerShow.com