Statistik Tidak Berparameter - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

Statistik Tidak Berparameter

Description:

Untuk menggunakan dan menjelaskan enam jenis pengujian ... Ujian Pemeringkatan Tanda Padanan-Pasangan Wilcoxon. Wilcoxon Matched-Pairs. Signed Rank Test ... – PowerPoint PPT presentation

Number of Views:361
Avg rating:3.0/5.0
Slides: 50
Provided by: aaronh87
Category:

less

Transcript and Presenter's Notes

Title: Statistik Tidak Berparameter


1
  • Statistik Tidak Berparameter

2
Objektif Pembelajaran
  • Untuk digunakan dalam pengujian hipotesis apabila
    tidak boleh membuat sebarang anggapan terhadap
    taburan yang kita ambil
  • Untuk mengetahui ujian untuk taburan bebas yang
    digunakan dalam keadaan tertentu
  • Untuk menggunakan dan menjelaskan enam jenis
    pengujian hipotesis tak berparameter
  • Ujian mengetahui kelemahan dan kelebihan ujian
    tak berparameter

3
Statistik Berparameter vs Tidak Berparameter
  • Statistik Berparameter adalah teknik statistik
    berdasarkan kepada andaian berkaitan populasi
    dimana sampel data adalah dipungut.
  • Andaian dimana data yang dianalisis adalah
    dipilih secara rawak dari populasi yang
    bertaburan normal.
  • Memerlukan ukuran kuantitatif yang menghasilkan
    data bertaraf interval atau perkadaran.

4
Statistik Berparameter vs Tidak Berparameter
  • Statistik Tidak Berparameter adalah berdasarkan
    andaian yang kurang populasi dan parameter.
  • Kadangkala dipanggil sebagai statistik tidak
    mempunyai taburan.
  • Berbagai-bagai jenis statistik tidak berparameter
    yang ada untuk digunakan dengan data bertaraf
    nominal atau ordinal.

5
Kebaikan Teknik Tidak Berparameter
  • Kadangkala tidak terdapat teknik berparameter
    alternatif untuk digunakan berbanding teknik
    tidak berparameter.
  • Beberapa ujian tidak berparameter boleh digunakan
    untuk menganalisis data nominal.
  • Beberapa ujian tidak berparameter boleh digunakan
    untuk menganalisis data ordinal.
  • Pengiraan statistik tidak berparameter kurang
    rumit berbanding kaedah berparameter, terutama
    untuk sampel yang kecil.
  • Pernyataan kebarangkalian yang diperolehi dari
    kebanyakan ujian tidak berparameter adalah
    kebarangkalian yang tepat.

6
Kelemahan Statistik Tidak Berparameter
  • Ujian tidak berparameter boleh membazirkan data
    jika ujian berparaeter boleh digunakan untuk data
    tersebut.
  • Ujian tidak berparameter biasanya tidak digunakan
    dengan meluas dan kurang dikenali berbanding
    ujian berparameter.
  • Untuk sampel yang besar, pengiraan bagi
    kebanyakan ujian tidak berparameter boleh
    mengelirukan.

7
Ujian Larian
8
Runs Test
  • Test for randomness - is the order or sequence of
    observations in a sample random or not
  • Each sample item possesses one of two possible
    characteristics
  • Run - a succession of observations which possess
    the same characteristic
  • Example with two runs F, F, F, F, F, F, F, F,
    M, M, M, M, M, M, M
  • Example with fifteen runs F, M, F, M, F, M, F,
    M, F, M, F, M, F, M, F

9
Runs Test Sample Size Consideration
  • Sample size n
  • Number of sample member possessing the first
    characteristic n1
  • Number of sample members possessing the second
    characteristic n2
  • n n1 n2
  • If both n1 and n2 are ? 20, the small sample runs
    test is appropriate.

10
Runs Test Small Sample Example
H0 The observations in the sample are randomly
generated. Ha The observations in the sample
are not randomly generated. ? .05 n1 18 n2
8 If 7 ? R ? 17, do not reject H0 Otherwise,
reject H0. 1 2 3 4 5 6 7 8 9 10 11
12 D CCCCC D CC D CCCC D C D CCC DDD CCC R
12 Since 7 ? R 12 ? 17, do not reject H0
11
Runs Test Large Sample
If either n1 or n2 is gt 20, the sampling
distribution of R is approximately normal.
12
Runs Test Large Sample Example
H0 The observations in the sample are randomly
generated. Ha The observations in the sample
are not randomly generated. ? .05 n1 40 n2
10 If -1.96 ? Z ? 1.96, do not reject
H0 Otherwise, reject H0.
1 1 2 3 4 5 6 7 8 9
0 11 NNN F NNNNNNN F NN FF NNNNNN F NNNN F
NNNNN 12 13 FFFF NNNNNNNNNNNN
R 13
13
Runs Test Large Sample Example
-1.96 ? Z -1.81 ? 1.96, do not reject H0
14
Ujian Mann-Whitney U
15
Mann-Whitney U Test
  • Nonparametric counterpart of the t test for
    independent samples
  • Does not require normally distributed populations
  • May be applied to ordinal data
  • Assumptions
  • Independent Samples
  • At Least Ordinal Data

16
Mann-Whitney U Test Sample Size Consideration
  • Size of sample one n1
  • Size of sample two n2
  • If both n1 and n2 are ? 10, the small sample
    procedure is appropriate.
  • If either n1 or n2 is greater than 10, the large
    sample procedure is appropriate.

17
Mann-Whitney U Test Small Sample Example
H0 The health service population is identical
to the educational service population on employee
compensation Ha The health service population is
not identical to the educational service
population on employee compensation
18
Mann-Whitney U Test Small Sample Example
? .05 If the final p-value lt .05, reject
H0. W1 1 2 3 4 6 7 8 31 W2
5 9 10 11 12 13 14 15 89
19
Mann-Whitney U Test Small Sample Example
20
Mann-Whitney U Test Formulas for Large Sample
Case
21
Incomes of PBS and Non-PBS Viewers
Ho The incomes for PBS viewers and non-PBS
viewers are identical Ha The incomes for PBS
viewers and non-PBS viewers are not identical
22
Ranks of Income from Combined Groups of PBS and
Non-PBS Viewers
23
PBS and Non-PBS Viewers Calculation of U
24
PBS and Non-PBS Viewers Conclusion
25
Ujian Pemeringkatan Tanda Padanan-Pasangan
Wilcoxon
26
Wilcoxon Matched-PairsSigned Rank Test
  • A nonparametric alternative to the t test for
    related samples
  • Before and After studies
  • Studies in which measures are taken on the same
    person or object under different conditions
  • Studies or twins or other relatives

27
Wilcoxon Matched-PairsSigned Rank Test
  • Differences of the scores of the two matched
    samples
  • Differences are ranked, ignoring the sign
  • Ranks are given the sign of the difference
  • Positive ranks are summed
  • Negative ranks are summed
  • T is the smaller sum of ranks

28
Wilcoxon Matched-Pairs Signed Rank Test Sample
Size Consideration
  • n is the number of matched pairs
  • If n gt 15, T is approximately normally
    distributed, and a Z test is used.
  • If n ? 15, a special small sample procedure is
    followed.
  • The paired data are randomly selected.
  • The underlying distributions are symmetrical.

29
Wilcoxon Matched-Pairs Signed Rank Test Small
Sample Example
H0 Md 0 Ha Md ? 0 n 6 ? 0.05 If
Tobserved ? 1, reject H0.
30
Wilcoxon Matched-Pairs Signed Rank Test Small
Sample Example
31
Wilcoxon Matched-Pairs Signed Rank Test Large
Sample Formulas
32
Airline Cost Data for 17 Cities, 1997 and 1999
H0 Md 0 Ha Md ? 0
33
Airline Cost T Calculation
34
Airline Cost Conclusion
35
Ujian Kruskal-Wallis
36
Kruskal-Wallis Test
  • A nonparametric alternative to one-way analysis
    of variance
  • May used to analyze ordinal data
  • No assumed population shape
  • Assumes that the C groups are independent
  • Assumes random selection of individual items

37
Kruskal-Wallis K Statistic
38
Number of Patients per Day per Physician in
Three Organizational Categories
Ho The three populations are identical Ha At
least one of the three populations is different
39
Patients per Day Data Kruskal-Wallis
Preliminary Calculations
40
Patients per Day Data Kruskal-Wallis
Calculations and Conclusion
41
Ujian Friedman
42
Friedman Test
  • A nonparametric alternative to the randomized
    block design
  • Assumptions
  • The blocks are independent.
  • There is no interaction between blocks and
    treatments.
  • Observations within each block can be ranked.
  • Hypotheses
  • Ho The treatment populations are equal
  • Ha At least one treatment population yields
    larger values than at least one other treatment
    population

43
Friedman Test
44
Friedman Test Tensile Strength of Plastic
Housings
Ho The supplier populations are equal Ha At
least one supplier population yields larger
values than at least one other supplier population
45
Friedman Test Tensile Strength of Plastic
Housings
46
Friedman Test Tensile Strength of Plastic
Housings
47
Friedman Test Tensile Strength of Plastic
Housings
48
Korelasi Pemeringkatan Spearman
49
Spearmans Rank Correlation
  • Analyze the degree of association of two
    variables
  • Applicable to ordinal level data (ranks)
Write a Comment
User Comments (0)
About PowerShow.com