Title: Statistik Tidak Berparameter
1- Statistik Tidak Berparameter
2Objektif Pembelajaran
- Untuk digunakan dalam pengujian hipotesis apabila
tidak boleh membuat sebarang anggapan terhadap
taburan yang kita ambil - Untuk mengetahui ujian untuk taburan bebas yang
digunakan dalam keadaan tertentu - Untuk menggunakan dan menjelaskan enam jenis
pengujian hipotesis tak berparameter - Ujian mengetahui kelemahan dan kelebihan ujian
tak berparameter
3Statistik Berparameter vs Tidak Berparameter
- Statistik Berparameter adalah teknik statistik
berdasarkan kepada andaian berkaitan populasi
dimana sampel data adalah dipungut. - Andaian dimana data yang dianalisis adalah
dipilih secara rawak dari populasi yang
bertaburan normal. - Memerlukan ukuran kuantitatif yang menghasilkan
data bertaraf interval atau perkadaran.
4Statistik Berparameter vs Tidak Berparameter
- Statistik Tidak Berparameter adalah berdasarkan
andaian yang kurang populasi dan parameter. - Kadangkala dipanggil sebagai statistik tidak
mempunyai taburan. - Berbagai-bagai jenis statistik tidak berparameter
yang ada untuk digunakan dengan data bertaraf
nominal atau ordinal.
5Kebaikan Teknik Tidak Berparameter
- Kadangkala tidak terdapat teknik berparameter
alternatif untuk digunakan berbanding teknik
tidak berparameter. - Beberapa ujian tidak berparameter boleh digunakan
untuk menganalisis data nominal. - Beberapa ujian tidak berparameter boleh digunakan
untuk menganalisis data ordinal. - Pengiraan statistik tidak berparameter kurang
rumit berbanding kaedah berparameter, terutama
untuk sampel yang kecil. - Pernyataan kebarangkalian yang diperolehi dari
kebanyakan ujian tidak berparameter adalah
kebarangkalian yang tepat.
6Kelemahan Statistik Tidak Berparameter
- Ujian tidak berparameter boleh membazirkan data
jika ujian berparaeter boleh digunakan untuk data
tersebut. - Ujian tidak berparameter biasanya tidak digunakan
dengan meluas dan kurang dikenali berbanding
ujian berparameter. - Untuk sampel yang besar, pengiraan bagi
kebanyakan ujian tidak berparameter boleh
mengelirukan.
7Ujian Larian
8Runs Test
- Test for randomness - is the order or sequence of
observations in a sample random or not - Each sample item possesses one of two possible
characteristics - Run - a succession of observations which possess
the same characteristic - Example with two runs F, F, F, F, F, F, F, F,
M, M, M, M, M, M, M - Example with fifteen runs F, M, F, M, F, M, F,
M, F, M, F, M, F, M, F
9Runs Test Sample Size Consideration
- Sample size n
- Number of sample member possessing the first
characteristic n1 - Number of sample members possessing the second
characteristic n2 - n n1 n2
- If both n1 and n2 are ? 20, the small sample runs
test is appropriate.
10Runs Test Small Sample Example
H0 The observations in the sample are randomly
generated. Ha The observations in the sample
are not randomly generated. ? .05 n1 18 n2
8 If 7 ? R ? 17, do not reject H0 Otherwise,
reject H0. 1 2 3 4 5 6 7 8 9 10 11
12 D CCCCC D CC D CCCC D C D CCC DDD CCC R
12 Since 7 ? R 12 ? 17, do not reject H0
11Runs Test Large Sample
If either n1 or n2 is gt 20, the sampling
distribution of R is approximately normal.
12Runs Test Large Sample Example
H0 The observations in the sample are randomly
generated. Ha The observations in the sample
are not randomly generated. ? .05 n1 40 n2
10 If -1.96 ? Z ? 1.96, do not reject
H0 Otherwise, reject H0.
1 1 2 3 4 5 6 7 8 9
0 11 NNN F NNNNNNN F NN FF NNNNNN F NNNN F
NNNNN 12 13 FFFF NNNNNNNNNNNN
R 13
13Runs Test Large Sample Example
-1.96 ? Z -1.81 ? 1.96, do not reject H0
14Ujian Mann-Whitney U
15Mann-Whitney U Test
- Nonparametric counterpart of the t test for
independent samples - Does not require normally distributed populations
- May be applied to ordinal data
- Assumptions
- Independent Samples
- At Least Ordinal Data
16Mann-Whitney U Test Sample Size Consideration
- Size of sample one n1
- Size of sample two n2
- If both n1 and n2 are ? 10, the small sample
procedure is appropriate. - If either n1 or n2 is greater than 10, the large
sample procedure is appropriate.
17Mann-Whitney U Test Small Sample Example
H0 The health service population is identical
to the educational service population on employee
compensation Ha The health service population is
not identical to the educational service
population on employee compensation
18Mann-Whitney U Test Small Sample Example
? .05 If the final p-value lt .05, reject
H0. W1 1 2 3 4 6 7 8 31 W2
5 9 10 11 12 13 14 15 89
19Mann-Whitney U Test Small Sample Example
20Mann-Whitney U Test Formulas for Large Sample
Case
21Incomes of PBS and Non-PBS Viewers
Ho The incomes for PBS viewers and non-PBS
viewers are identical Ha The incomes for PBS
viewers and non-PBS viewers are not identical
22Ranks of Income from Combined Groups of PBS and
Non-PBS Viewers
23PBS and Non-PBS Viewers Calculation of U
24PBS and Non-PBS Viewers Conclusion
25Ujian Pemeringkatan Tanda Padanan-Pasangan
Wilcoxon
26Wilcoxon Matched-PairsSigned Rank Test
- A nonparametric alternative to the t test for
related samples - Before and After studies
- Studies in which measures are taken on the same
person or object under different conditions - Studies or twins or other relatives
27Wilcoxon Matched-PairsSigned Rank Test
- Differences of the scores of the two matched
samples - Differences are ranked, ignoring the sign
- Ranks are given the sign of the difference
- Positive ranks are summed
- Negative ranks are summed
- T is the smaller sum of ranks
28Wilcoxon Matched-Pairs Signed Rank Test Sample
Size Consideration
- n is the number of matched pairs
- If n gt 15, T is approximately normally
distributed, and a Z test is used. - If n ? 15, a special small sample procedure is
followed. - The paired data are randomly selected.
- The underlying distributions are symmetrical.
29Wilcoxon Matched-Pairs Signed Rank Test Small
Sample Example
H0 Md 0 Ha Md ? 0 n 6 ? 0.05 If
Tobserved ? 1, reject H0.
30Wilcoxon Matched-Pairs Signed Rank Test Small
Sample Example
31Wilcoxon Matched-Pairs Signed Rank Test Large
Sample Formulas
32Airline Cost Data for 17 Cities, 1997 and 1999
H0 Md 0 Ha Md ? 0
33Airline Cost T Calculation
34Airline Cost Conclusion
35Ujian Kruskal-Wallis
36Kruskal-Wallis Test
- A nonparametric alternative to one-way analysis
of variance - May used to analyze ordinal data
- No assumed population shape
- Assumes that the C groups are independent
- Assumes random selection of individual items
37Kruskal-Wallis K Statistic
38Number of Patients per Day per Physician in
Three Organizational Categories
Ho The three populations are identical Ha At
least one of the three populations is different
39Patients per Day Data Kruskal-Wallis
Preliminary Calculations
40Patients per Day Data Kruskal-Wallis
Calculations and Conclusion
41Ujian Friedman
42Friedman Test
- A nonparametric alternative to the randomized
block design - Assumptions
- The blocks are independent.
- There is no interaction between blocks and
treatments. - Observations within each block can be ranked.
- Hypotheses
- Ho The treatment populations are equal
- Ha At least one treatment population yields
larger values than at least one other treatment
population
43Friedman Test
44Friedman Test Tensile Strength of Plastic
Housings
Ho The supplier populations are equal Ha At
least one supplier population yields larger
values than at least one other supplier population
45Friedman Test Tensile Strength of Plastic
Housings
46Friedman Test Tensile Strength of Plastic
Housings
47Friedman Test Tensile Strength of Plastic
Housings
48Korelasi Pemeringkatan Spearman
49Spearmans Rank Correlation
- Analyze the degree of association of two
variables - Applicable to ordinal level data (ranks)