A random sum - PowerPoint PPT Presentation

1 / 8
About This Presentation
Title:

A random sum

Description:

N is called a stopping time. Simple random walk. p0(n)=P ... Survival of family names. Nuclear pile criticality. Epidemics. Z0=1. Z1=2. Z2=4. Z3=3. Some facts ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 9
Provided by: peterg1
Learn more at: https://stat.uw.edu
Category:
Tags: family | nuclear | random | sum

less

Transcript and Presenter's Notes

Title: A random sum


1
A random sum
  • X1,...,Xn iid GX, N GN
  • has pgf
  • N is called a stopping time.

2
Simple random walk
  • p0(n)P(Sn0)
  • f0(n)P(S1?0,...,Sn-1?0,Sn0)P(T0n)
  • where T0 is the random time of first return to 0.
  • Let
  • Theorem
  • P0(s)1P0(s)F0(s)
  • P0(s)(1-4pqs2)-1/2
  • F0(s)1-(1-4pqs2)1/2

3
Proof
  • P0(s)1P0(s)F0(s)
  • P0(s)(1-4pqs2)-1/2
  • 0

4
Return to 0
  • P(ever return to 0) F0(1) 1-(1-4pq)1/2
  • 1- q-p
  • If qp so return is certain, expected time until
    return is
  • The random walk is recurrent if return is
    certain, transient otherwise.
  • The fair random walk is recurrent in two
    dimensions (the drunkards walk) but not in three
    or more.

5
A branching process
  • Survival of family names
  • Nuclear pile criticality
  • Epidemics

Z01
Z12
Z24
Z33
6
Some facts
  • A branching process is a Markov process
  • EZn E(X)n
  • VarZn
  • Let unP(Zn0).
  • Then unGX(un-1).
  • u0?

7
u1
u2
8
The extinction probability
  • which is the smallest non-negative root of
    GX(s)s.
  • It is 1 if E(X) 1.
Write a Comment
User Comments (0)
About PowerShow.com