Title: Why Do People Under-Search?
1Why Do People Under-Search? The Effects of
Payment Dominance on Individual Search Decisions
And Learning
- Gong, Binglin
- Shanghai JiaoTong University
- Ramachandran, Vandana
- University of Maryland
- June 2007
- _at_ ESA Rome
2Outline
- Research Questions
- Literature Review
- Theoretical Background
- Discussion of Payoff Functions
- Experimental Design
- Experimental Results
- Conclusions
3Research Question
- Why do people under-search, as observed in
previous sequential search experiments? - Does payment dominance play a role here? If so,
how and how much?
4Literature Theory of Search
- Optimal searchreservation value strategy
- Keep searching if the expected gain from search
is higher than the search cost, and stop
otherwise. - --Stigler (1961)
- If the distribution is known, and search costs
are constant, the optimal search strategy is to
use a reservation value, and recall should not
matter (should never be used).
5Literature Experiments on Search
- Schotter and Braunstein (1981) optimal
searchreservation value strategy - Kohn and Shavell (1974) With increased search
costs, players become less selective - Sonnemans (1996), (1997) subjects write down
strategies instead of realized points - Cox and Oaxaca (1989), (1996), (2000) finite
horizon, unknown distribution - Hey (1981), (1987) individual behavior, rules of
thumb - They found that search is highly efficient (in
terms of earnings) and there is some tendency to
recall. Lower reservation values than risk
neutral predictions were observed.
6Why Do People on Average Search Less Than
Predicted?
- Risk Posture
- All the above predictions are based on risk
neutrality. If people are risk averse, then
accepting current value is safer than searching - Risk posture may not be a sufficient explanation
(Rabin 2000 - all experiments offer very low
monetary prizes, over which one may assume that
subjects are locally risk neutral. Cox and Oaxaca
get different risk preferences estimates for
the same subjects in different treatments.) - Extra cost for search
- Other than the costs assigned in the experiment,
people need to take time and effort to search and
figure out best strategy. - Flat payoff
- Stopping rules that give rise to too little
search perform rather well in most cases
(Sonnemans 1998)
7Literature Payment Dominance
- Glenn Harrison (1989)
- Comments by Friedman, Kagel and Roth, Cox, Smith,
and Walker, Merlo and A. Schotter (1992 ) - Reply by Glenn Harrison (1992 )
- When an economic problem is complicated but
people can learn from the history, a flat payoff
function can limit the information people get
from experience and lead to noisier behavior. - Economists should look at not only the message
space, but also the payoff space. - Experimenters should design experiments carefully
to avoid the payment dominance problem.
8Example of A Sequential Search Problem (Known
Distribution, with Recall)
- In each period, one can randomly draw one award
from the uniform distribution between 0 and 2,
after paying the search cost s0.2. These are
known to the searcher. - After each draw, one can decide whether to stop
or to keep searching. - If one stops after n draws, her total payoff is
the highest draw minus the total search cost, sn.
9Theoretical Predictions for Risk Neutral
Individuals
- Using optimal search strategy, when distribution
is known, the reservation value r should satisfy -
- The expected number of draws n will be
-
-
- The expected earning in each round is
- If optimal strategy is used, the expected earning
should be equal to reservation value.
10Estimate The Reservation Value
- 0 r/2 r 1r/2 2
- AwardU0,2
- Reservation Value r
- E(accepted draw)1r/2
- E(rejected draw)r/2
- Estimator of reservation value
- 2average(accepted-1, rejected)
- We get an estimated reservation value for each
subject in each round.
11What We Learn About Payoff
- The bigger the award (price, wage, etc.)
dispersion is, the steeper the payoff function
is. - The smaller the search cost is, the steeper the
payoff function is.
12(No Transcript)
13(No Transcript)
14E(earning)
Search cost
Reservation value
15Experimental Test of Payoff Dominance
- Use plat payoff and steep payoff as treatments,
look at the difference of deviation from optimal
strategy.
Treatment 1 2 3
Distribution U0,2 U0,2 U0,10
Search Cost 0.05 0.50 0.05
Slope of E(Payoff) (left, right) 0.3, -20 0.1, -0.1 0.45, -30
Diff. in Payoff in the relatively flat area 0.6 0.086 4
Predicted Reservation Value big variance serious under-search very big variance under-search
r, maxE(payoff) 1.553 0.586 9
16Alternate Order of Treatments
Subject ID Treatment Order Treatment Order Treatment Order
1-4 1 2 3
5-8 1 3 2
9-12 2 1 3
13-16 2 3 1
17-20 3 1 2
21-24 3 2 1
17Strategy Method And Real Search
- We use a mix of strategy method and real search
in this experiment - Reading instructions (reveal distribution of
awards) - Subjects choose strategy (reservation value )
- Subjects make decisions in real sequential search
(repeat for 10 rounds) - Subjects revise strategy (reservation value )
- All decisions are paid.
18Why?
- By using strategy method - real searches -
strategy method , we can measure the effect of
learning from real search experiences. - When we use strategy method and pay subjects the
expected payoffs, we can eliminate risk aversion
as a reason for under-search.
19(No Transcript)
20Basic Statistics on Stated And Estimated
Reservation Values
21Deviation from Optimal Reservation Value
Note devr1b r1b r1,
22Percentage Deviation from Optimal Reservation
Value
Note pdevr1edevr1e/1.553100, pdevr2edevr2e/0
.586100, pdevr3edevr3e/9100.
23Deviation from Optimal Reservation Value As
Percentage of The Upper Bound of Award
Distribution
Note phdevr1edevr1e/2100, phdevr2edevr2e/21
00 phdevr3edevr3e/10100
24Learning from Real Search
Note learn1abs(devr1b)-abs(devr1a) learn2abs(
devr2b)-abs(devr2a) learn3abs(devr3b)-abs(devr3a
)
25Treatment EffectsResults of Wilcoxon Sign-Rank
Tests Individual Treatment Level
26Learning EffectsResults of Wilcoxon Sign-Rank
TestsIndividual Treatment Level
27(No Transcript)
28Conclusions
- Asymmetric expected payoff function can partly
explain under-searching. - Over-searching can happen when payoff function is
flat on both sides. - Flat payoff function leads to noisier behavior in
individual search decisions. - People learn more from real searches when payoff
function is steeper. - People sometimes make bigger mistakes in strategy
method than in real searches.
29Future Study
- Bigger sample size ? More power
- Add a risk posture test in the experiment
- Variance of payoff
- Other distributions of awards
30Thank you!