Title: Dia 1
1PARAMETERIZATION OF THE INFLUENCE OF NITRIC ACID
ON AEROSOL ACTIVATION Sami Romakkaniemi, Harri
Kokkola, Ari Laaksonen Department of Applied
Physics University of Kuopio, Finland
2Introduction
HNO3 increases cloud droplet number
concentration Smaller mean cloud droplet
size Longer cloud lifetime and higher albedo
Overall cooling effect
3Introduction
- Number of cloud droplets depends on updraft
velocity, environmental variables, condensing
gases, and properties of CCN. - Number of cloud droplets can be calculated with
an adiabatic air parcel model. - Calculation time
- CCN activation is parameterized to form that can
be used in GCMs - Effect of condensing volatile gases must be also
parameterized
4Parameterizations for cloud droplet formation
1) Based on measurements
Nd -595298log(Na)
(Gultepe and Isaac, Journal of Climate, 12,
1268-1279,1998)
5Parameterizations for cloud droplet formation
(Boucher and Lochmann, Tellus B, 47, 1995)
6Parameterizations for cloud droplet formation
2) Based on analytical calculations modeling
Critical saturation as a function of dry diameter
Equilibrium (Köhler) curves
Scrit(D0)
7Parameterizations for cloud droplet formation
8Parameterizations for cloud droplet formation
- Number of cloud droplets can be estimated if Smax
can be solved. - Smax can be solved from differential equations
descriping the water condensation on droplets - Parameterization for cloud droplet formation
Activated
Nonactivated
9Parameterizations for cloud droplet formation
Nenes and Seinfeld, JGR, 108, 2003
Abdul-Razzak et al., JGR, 103, 1998
10Nitric acid increases the amount of hygroscopic
material in droplets Scrit changes Parameterizat
ions made for pure water condensation can not be
used (or are at least difficult to use)
11(No Transcript)
12What must be taken into account in the new
parameterization
Amount of nitric acid
- Aerosol population
- Number of particles
- mean diameter
- deviation, shape
- composition
Temperature
Total pressure
Updraft velocity
(Activated fraction without nitric acid)
Total number of variables is more than 6
13x HNO3 concentration (ppb) F0 activated
fraction without HNO3
14rgS geometric mean surface radius Xm
hygroscopic massfraction CHNO3 HNO3
concentration T temperature V updraft
velocity Nparticle concentration F0 activated
fraction without HNO3 sigmastandard
deviation PTOT total pressure
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22N1 200cm-3 , V 0.1m/s N2 2 cm-3 rg1
15nm HNO3 0.1ppb
N1 1000cm-3 , V 0.1m/s N2 10 cm-3 rg1
15nm HNO3 0.5ppb
N1 1000cm-3 , V 0.1m/s N2 10 cm-3 rg1
15nm HNO3 0.5ppb
N1 1000cm-3 , V 0.5m/s N2 100 cm-3 rg1
15nm HNO3 0.5ppb
23N1 200cm-3 , V 0.1m/s rg1 15nm rg2 250
nm HNO3 0.1ppb
N1 1000cm-3 , V 0.1m/s rg1 15nm rg2 30nm
HNO3 0.3ppb
N1 1000cm-3 , V 1.0m/s rg1 15nm rg2 30nm
HNO3 0.3ppb
N1 1000cm-3 , V 0.1m/s rg1 15nm rg2
30nm HNO3 0.1ppb
24(No Transcript)
25- Coming up...
- Chemical composition, HCl
- Testing the parameterization in ECHAM?
- Parameterization of the effect of ammonia on
cloud droplet formation