Title: A Simplified Proof for Roberts Theorem
1A Simplified Proof for Roberts Theorem
Ron Lavi, Ahuva Mualem, and Noam Nisan
2Motivation
- Mechanisms elections, auctions (1st / 2nd
price, double, combinatorial, ), resource
allocations - social goal vs. individuals strategic
behavior. -
- Main Problem Which social goals can be
achieved ? -
- For some settings, Roberts showed that only
limited class of goals can be implemented (even
if the society has unlimited amount of money).
3Social Choice Function (SCF(
- f V1 Vn ? A
- A is the finite set of possible alternatives.
- Each player has a valuation vi A ? R.
- f chooses an alternative from A for every v1 ,,
vn. - For CAs A all feasible partitions of the
given items - For CAs Vi vi that satisfy 1, 2, 3(1)
no externalities (2) free disposal (3)
normalization - For CAs a partition S1..Sn that maximizes ?i
vi(Si). - Alternatively for CAs S1..Sn that maximizes
mini vi (Si ).
4Social Choice Function (SCF(
- f V1 Vn ? A
- A is the finite set of possible alternatives.
- Each player has a valuation vi A ? R.
- f chooses an alternative from A for every v1 ,,
vn. - 1 item Auction A player i wins, i1..n,
Vi R, f (v) argmax(vi) - Combinatorial Auction a partition of items
S1..Sn that maximizes - ?i vi(Si).
- Nisan, Ronens problem a partition of tasks
S1..Sn that minimizes maxi ci (Si ).
5Truthful Implementation of SCFs
- Dfn A Mechanism m(f, p) is a pair of a SCF f
and a payment function pi for every player. - Dfn A Mechanism is truthful (in dominant
strategies) if rational players tell the truth
? vi , v-i , wi vi ( f(vi , v-i)) pi(vi ,
v-i) vi ( f(wi , v-i)) pi(wi , v-i). -
- - If the mechanism m(f, p) is truthful we also
say that m implements f. - - 1st vs. 2nd Price Auction.
- - Not all SCFs can be implemented Majority
vs. Minority between 2 alternatives.
6What SCFs are implementable?
- Positive Result VCG ? A and ? V
f(v)argmaxa? A Si vi (a). - (Also all affine maximizers f(v) argmaxa? A
Si wi vi (a) ?a .)
7What SCFs are implementable?
- Positive Result VCG ? A and V f(v)argmaxa?
A Si vi (a). - (Also all affine maximizers f(v) argmaxa? A
Si wi vi (a) ?a .) - Negative Result Roberts 79 If A 3 and V
is unrestricted (RnA), then only affine
maximizers are implementable.
8What SCFs are implementable?
- Positive Result VCG ? A and V f(v)argmaxa?
A Si vi (a). - (Also all affine maximizers f(v) argmaxa? A
Si wi vi (a) ?a .) - Negative Result Roberts 79 If A 3 and V
is unrestricted (RnA), then only affine
maximizers are implementable. - Single Parameter Domains (essentially Ai 2 )
Many other SCFs are implementable. - CAs with single minded bidders Lehmann,
OCallaghan, Shoham, Scheduling Related Parallel
Machines Archer, Tardos, Profit Maximization
of Digital goods Fiat, Goldberg, Hartline,
Karlin
9What SCFs are implementable?
- Positive Result VCG ? A and V f(v)argmaxa?
A Si vi (a). - (Also all affine maximizers f(v) argmaxa? A
Si wi vi (a) ?a .) - Negative Result Roberts 79 If A 3 and V
is unrestricted (RnA), then only affine
maximizers are implementable. - Single Parameter Domains Many other SCFs are
implementable. - e.g. LOS99
- OPEN
severely restricted domains with non-affine
maximizers
unrestricted domains with only affine
maximizers
Multiparameter Domains
CAs ?
10Comparison with the non-quasi-linear case
Arrow 63 Gibbard-Satterthwaite73-5
Single-Peaked Domains
Saturated
Domains must be dictatorial
11 12In 1 item Auctions Truthfulness ? Monotonicity
This can be generalized to single parameter
domains LOS99. Monotonicity refers to the
social choice function alone (no need to consider
the payment function). - .
13Truthfulness ? Cyclic -Monotonicity
- Thm1 RochetRoz A SCF f V ? A is
truthfully implementable iff f is
Cyclic-Monotone. - Thm2 If f is truthfully implementable then f
satisfies W-MON.
14Truthfulness ? Cyclic -Monotonicity
- Thm1 RochetRoz A social choice function f
V ? A is truthfully implementable iff f is
Cyclic-Monotone. - Thm2 If f is truthfully implementable then f
satisfies W-MON. - Dfn1 f satisfies W-MON if for any vi , ui
and v-i - f (vi , v-i) a and f (ui , v-i) b
- implies ui (b) - ui (a) gt vi (b) - vi (a).
vi (a) vi (b)
ui (a)
ui (b)
15- Example single player,
- 2 alternatives a, and b,
- 2 possible valuations v, and u.
- Majority satisfies W-MON.
-
- Minority doesnt.
16Truthfulness ? Cyclic -Monotonicity
- Thm1 RochetRoz A social choice function f
V ? A is truthfully implementable iff f is
Cyclic-Monotone. - Thm2 If f is truthfully implementable then f
satisfies W-MON. - Dfn1 f is W-MON if for any vi , ui and v-i
- f (vi , v-i) a and f (ui , v-i) b
- implies vi (a) - vi (b) ui (b) - ui (a) gt
0. - Dfn2 f is Cyclic-Monotone if for any k, vi 1,
vi 2, , vi k , v-i - ?j1k vi j (f(vi j, v-i )) - vi j (f(vi j1
, v-i )) gt 0. - Remark If A2, then Dfn1Dfn2.
17- Example
- single player
- A a, b, c.
- V1 v, u, w.
- f(v)a, f(u)b, f(w)c.
- f satisfies W-MON, but not Cyclic-Monotonicity
- v(a) v(b) u(b) u(c) w(c) w(a) lt 0.
-
18Monotonicity what is really needed for our proof
- Def dabi (v-i ) inf vi (a) - vi (b) vi
? Vi s.t. f (vi , v-i ) a . - In particular, if f(v) a, then
- vi (a) - vi (b) dabi (v-i ) for every b ?
a.
19Monotonicity what is really needed for our proof
- Def dabi (v-i ) inf vi (a) - vi (b)
vi ? Vi s.t. f (vi , v-i ) a . - W-MON essentially ? dabi (v-i )
dbai (v-i ) 0 - Cyclic-Monotonicity essentially ?
- dabi (v-i ) dbci (v-i )dcai (v-i ) 0
20- In Unrestricted Domains the Monotonicity
condition can be strengthened w.l.o.g
21- Dfn f satisfies S-MON if for any vi , ui and
v-i - f (vi , v-i) a and f (ui , v-i) b
- implies ui (b) - ui (a) gt vi (b) - vi (a).
- Intuition S-MON stability
- Prop If V is unrestricted then for every f
there exists f - if f satisfies W-MON ? f satisfies
S-MON. - if f is affine maximizer ? f is affine
maximizer.
22- Weaker version of Roberts Thm
- Let A 3, and V RnA. If f is
decisive and - truthful implementable,
- then f must be affine maximizer (with wj gt 0,
j 1..n) . - Equivalent Thm
-
- Let A 3, and V RnA. If f is
decisive and - satisfies cyclic-monotonicity and S-MON,
- then f must be affine maximizer (with wj gt 0,
j 1..n) .
23- (For every a, b, c ? A, and v-i )
- Claim1 -? lt dabi (v-i ) lt ? .
- Claim2 dabi (v-i ) dbai (v-i
) 0 . - Claim3 dabi (v-i ) dbci (v-i ) dcai (v-i )
0 . - Claim4 dabi (v-i ) dab i (v-i - L 1j,c ),
for every L ? R. - Claim5 dabi (v-i ) dab i (v-i (a) - v-i (b))
. - Conclusion dabi (r ) dbai (-r ) 0 ,
- dabi (r ) dbci (t ) dcai (-r - t ) 0
, for every r, t ? Rn-1 - dabi (0 ) dbai (0 ) 0 .
- dabi (0 ) dbci (0 ) dcai (0 ) 0 .
24- (For every a, b, c ? A, r, t, s? Rn-1 )
- Claim6 dabi (rt ) - dabi (r ) dcbi (st )
- dcbi (s ) . - Claim7 dabi (r ) - Sj? i wj rj dabi (0
) . - (the same wj gt 0 for every a and b).
- Finally Fix some c. If f (v) a, then for
every b we have - vi (a) - vi (b) gt dabi (v-i (a) - v-i (b))
- - Sj? i wj (vj (a) - vj (b)) dabi (0 )
- - Sj? i wj (vj (a) - vj (b)) - dbci (0 ) -
dcai (0 ) - - Sj? i wj (vj (a) - vj (b)) - dbci (0 )
daci (0 ). - And so f(v) argmaxa ? A vj (a) Sj? i
wj vj (a) - daci (0 )
25 26W-MON ? Truthfulness?
- Thm Bikhchandani, Chatterji, Lavi, M, Nisan,
Sen, Muller, Vohra - W-Mon ? Truthfulness for Combinatorial Auctions,
- Multi Unit Auctions with decreasing marginal
valuations, and several other interesting
domains. - Thm Saks, Yu
- If V is convex, then W-Mon ? Truthfulness.
27Impossiblities for Restricted Domains
- Thm Lavi, M, Nisan
- Every player-decisive, non-degenerate
implementable SCF for Combinatorial Auctions that
satisfies S-MON must be an almost affine
maximizer.
28Monotonicity one more thing
-
- Many other implementation concepts imply similar
monotonicity conditions. E.g., truthfulness in
expectation Lavi, Swamy, M, Schapira.
29