Subdivision surfaces Construction and analysis - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Subdivision surfaces Construction and analysis

Description:

Affine invariance. Convex hull property. Polynomials locally. Splines in regular regions ... Affine invariant. Convex hull property. Stationary. Symmetric ... – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 37
Provided by: mart109
Category:

less

Transcript and Presenter's Notes

Title: Subdivision surfaces Construction and analysis


1
Subdivision surfacesConstruction and analysis
  • Martin Reimers
  • CMA/IFI, University of Oslo
  • September 24th 2004

2
Subdivision concept
  • Piecewise linear geometry with vertices P0
  • Refine and reposition using subdivision rule
  • P0, P1, P2?

3
Subdivision Surfaces
  • The same concept for surfaces
  • Piecewise linear geometry refined P0, P1, P2?
  • P0 P1
    P2 ? P1

Properties of P1? Continuous, smooth, fair?
4
Overview
  • Introduction
  • Subdivision schemes
  • Construction
  • Analysis

5
Spline curve subdivision
  • Control polygon PP0
  • Cut corners recursively, get P1, P2?
  • Subdivision rule
  • p2k (3pk-1 pk)/4
  • p2k1( pk-13pk)/4
  • Subdivision matrix S
  • Limit P1 is a quadratic spline (smooth curve)

6
Spline curve subdivision
  • Generalization refine and average d-1 times
  • Pj converge to spline of degree d
  • Linear operations in a subdivision matrix S
    s.t.
  • Pj1SPj
  • Cubic splines
  • Many curve subdivision methods
  • Next surfaces

7
Spline surface subdivision
  • P0 regular control mesh (grid) in 3D
  • e.g. points and quadrilaterals
  • Refine P0 by a certain subdivision rule
  • yields new mesh P1
  • Linear operations, collect in a matrix S
  • Pj1SPj
  • Control mesh converge to spline bi-degree 2
  • Generalize d-1 averages gives bi-degree d

8
Doo Sabin Subdivision (78)
  • Generalization General mesh
  • N-sided faces
  • Any valence (Not only 4)
  • Masks
  • Still have Pj1SPj (linearity)
  • Generalize bi-quadratic spline to arbitrary mesh
  • C1 continuous (smooth) limit surface
    PetersReif98

9
Doo Sabin Subdivision
  • Example

10
Catmull-Clark Subdivision (78)
  • Generalize bi-cubic spline to quad mesh

Face mask
Edge mask
Constants ?3/2n ?1/4n (others possible)
As before Pj1SPj
11
Catmull-Clark scheme
Implementation version
12
Catmull-Clark scheme
Pj converge to a C1 surface, C2 a.e
PetersReif98
13
Catmull-Clark, special rules
  • Crease/bdy masks
  • Piecewise smooth surface

14
Loops scheme (87)
  • Edge
  • Vertex

15
Loops scheme (87)
Implementation version
  • Edge
  • Vertex

16
Loop boundary mask
  • Use cubic B-spline refinement rules

Vertex Rule
Edge Rule
17
Loops scheme
  • Generalize 3-direction (quartic) box-splines
  • C1 everywhere, not C2 in irregular points
  • Special masks for features (Hoppe et al)
  • Alternative view
  • Refine linearly
  • Smooth all vertices by
  • ( Laplacian smoothing )

18
Loop example
19
Spline based schemes
  • All schemes up to now
  • Affine invariance
  • Convex hull property
  • Polynomials locally
  • Splines in regular regions
  • Approximates the control mesh (like splines)

20
Butterfly scheme (90)
  • Dyn,Levin,Gregory
  • Interpolating
  • Triangles
  • Not polynomials
  • No convex hull property
  • Not C1 for n3 or ngt7
  • Modified scheme zorin is C1 but not C2

Edge mask
21
Examples
  • Famous schemes

22
Subdivision rules/schemes
  • Many categories, ways to refine mesh etc.
  • Mesh types tris, quads, hex, combinations
  • Interpolating/Approximating
  • (Non)Uniform
  • (Non)Stationary
  • (Non)Linear
  • Subdivision zoo
  • Midpoint scheme PetersReif
  • v3 scheme Kobbelt
  • Refineaverage Stam/Warren et al
  • 4-8 subdivision VelhoZorin
  • Tri/Quad schemes
  • many more
  • Rules constructed to obtain objective
  • Mimic splines, interpolation, smoothness/fairness,
    features,

23
Surface subdivision
Splines Toy Story 1
  • Is this a toy?
  • Pros
  • Many of the pros of splines
  • Flexibility, wrt. topology/mesh
  • Spline surfaces without gaps and seams!
  • Simple to implement
  • Simple/intuitive to manipulate
  • Cons
  • No global closed form (but locally)
  • Evaluation not straight forward (but)
  • Ck , kgt1 is hard
  • Artefacts (ripples etc.)
  • CC cannot make convex surface if ngt5
    PetersReif04

Geris Game (Pixar studios)
24
NEXT ANALYSIS
  • Consider primal spline schemes (e.g. Loop, C-C)
  • Linear
  • Affine invariant
  • Convex hull property
  • Stationary
  • Symmetric
  • Smooth in regular regions
  • Have vertex correspondency
  • Start with control mesh P0 with vertices in R3
  • Subdivision yields finer meshes P1,P2,?
  • What properties does limit surface P1 have?
  • Study
  • Limit points and normals / tangent planes
  • C1 smoothness
  • ( Curvature, C2 )

25
Regular regions
  • If mesh is regular, limit surface P1 is known
    (spline)
  • Analyze irregular regions
  • Subdivision
  • Preserves valence
  • Insert new regular vertices
  • ) regular regions grow and
  • irregular regions shrink
  • Limit surface def on the green
  • rings are C2 quartic splines over
  • triangles of Pj
  • Each subdivision adds a spline ring to the
    neighbourhood of
  • an irregular point

Loop scheme
26
The local subdivision matrix
  • Study irregular vertex p and neighbourood P0
  • Stationary scheme subdivision matrix S s.t.
  • Pj1S Pj
  • map neighbourhood to neighbourhhood
  • S determines limit surface around p
  • Assume S is non-defective SQ?Q-1
  • Pj S Pj-1 Sj P0 Q?jQ-1 P0
  • Spectral properties of S are fundamental!!!

p
27
Spectral analysis
  • S Q?Q-1
  • Q (q0,q1,?qL) eigenvectors
  • ? diag(?0,?1,?,?L) eigenvalues,
    ?0?1??L
  • S often block symmetric with circulant blocks
  • ) Can find Q and ? with Fourier techniques
  • Dominant eigenpair ?01gt?1 and q0(1,?,1)
    (Affine invariance)
  • Controls convergence
  • Subdominant eigenpairs ??1?2?
  • Controls tangent plane continuity
  • Want 1gt ?1?2 gt?3
  • Sub-subdominant eigenpairs ??3?4 ?
  • Controls curvature
  • Want ?2 ?

28
Limit points
  • Have Sj Q?jQ-1
  • Eigen expansion P0? qi ai ai2 R3
  • Pj ? ?ij qi ai
  • Since ?01gt?i and q0 (1,?,1)
  • Pj! (a0,a0,?)T as j ! 1
  • Limit point p1 a0l0P0
  • Left eigenvector l0 can be determined from a n1
    matrix
  • Also Control mesh converge to continuous surface

29
Spline rings
L
  • Limit surface P1 is union of limit point and
    spline rings xj
  • xj?n ! P1 ½ R3, P1 ? xj(?n) p1
  • Where ?n 1,?,nL (quad based scheme)
  • Limit surface can be parameterized over squares
  • Basis functions B1,?,BN?n! R s.t. ? Bi 1 and
  • xj ? Bi pijB Pj
  • Define eigenfunctions ?i?n! R ?iBi qi
  • xj B Pj ? ?ij ?i ai
  • Note that ?01 since q0(1,1,?)

xj(?n)
Xj1(?n)
30
Tangent plane
  • Each spline xj ring is C1
  • Assume 1gt?1?2gt?3 and q1,q2 lin.indep.
  • Also that a1,a2 lin.indep
  • xj a0 ?j ?1 a1 ?j ?2 a2 o(lj)
  • Du xj ?j (Du ?1 a1 Du ?2 a2 o(1) )
  • Dv xj ?j (Dv ?1 a1 Dv ?2 a2 o(1) )
  • Normal is well defined and continuous if
  • Normal(xj) Du xj Dv xj /Du xj Dv xj !
    a1a2 /a1a2
  • Tangent vectors a1, a2 found using left
    eigenvectors of S

31
Smoothness C1
  • ) tangent plane cont. if det D (?1,?2)? 0
  • Analysis only relevant if generic data det (a1
    ,a2) ? 0
  • Want C1, more than tangent plane cont.
  • P1 is C1 if it is C1 fcn. over the Tangent Plane
  • xj a0 ?j (?1 a1 ?2 a2)o(?j)
  • ring xj converge uniformly to tangent plane
  • Big questionReif is limit xj injective?
  • Yes if ?1 e1 ?2 e2 (?1 , ?2) is injective

a1
a2
a1
a0
32
Characteristic map
  • Reif95 Defined as ?(?1,?2) ?n! R2
  • ?(i,u,v)B(i,u,v)(q1,q2)
  • Theorem Reif95
  • P1 is a C1 surface for generic initial data if
  • ??1?2gt?3 with q1,q2 lin. independent
  • ? is regular and injective
  • Conditions means ? has a cont. Inverse
  • (can be used to parameterize P1)
  • Major point
  • P1 is a graph over TP near p1, thus C1 regular

Not injective
?
Image ?(?n)
33
Verifying C1 regularity
  • PetersReif98 Showed C1 of DS CC
  • Umlauf Showed C1 for Loop
  • Check conditions 1?0gt?1?2 gt?3
  • Check regularity and injectivity of ?
  • Rotationally symmetric ) study segments
  • Regular Use Bezier form to show that ?u ?v ? 0
  • Injectivity show that boundary is simple
  • Generalizations/simplifications
  • Zorin, Umlauf,

34
Continuous Curvature C2
  • MUCH harder to get
  • Holy grail C2, local, stationary, ? ? 0 ,low
    polynomial degree
  • Large support?
  • Not stationary?
  • ? 0 in irregular pointsUmlaufPrautzsch
  • High degree?
  • Prautzsch/Reif polynomial scheme must have d
    2k2 for Ck
  • Thus C2 requires degree 6 in regular regions
  • Neccessary condition for bounded curvature ?2
    ?3
  • Has been used to find good schemes (CC/DS)

35
Scheme manipulation
  • Take a scheme S
  • Spectral analysis find SQ ? Q-1
  • Manipulate ? Set e.g. ?3 ?2
  • New eigenvalues ?2
  • New scheme S2Q ?2 Q-1 with better properties
  • e.g. bounded curvature

36
Conclusion
  • Subdivision is very usefull in some applications
  • Better methods needed for high end CAD
  • Construction generalize splines, tune spectrum
  • Analysis of linear schemes based on linear
    algebra
  • Nonlinear/Nonstationary Not much is known??,
    harder!
Write a Comment
User Comments (0)
About PowerShow.com