Title: Computer aided geometric design with PowellSabin splines
1Computer aided geometric designwith
Powell-Sabin splines
Ph.D Student Seminar
2What is it?
-
- C1-continuous
- quadratic splines
- defined on an arbitrary triangulation
- in Bernstein-Bézier representation
3Why use it?
- PS-Splines vs. NURBS
- suited to represent strongly irregular objects
- PS-Splines vs. Bézier triangles
- smoothness
4Main works
- M.J.D. Powell, M.A. Sabin. Piecewise quadratic
approximations on triangles. ACM Trans. Math.
Softw., 3316325, 1977. - P. Dierckx, S.V. Leemput, and T. Vermeire.
Algorithms for surface fitting using Powell-Sabin
splines, IMA Journal of Numerical Analysis, 12,
271-299, 1992. - K. Willemans, P. Dierckx. Surface fitting using
convex Powell-Sabin splines, JCAM, 56,
263-282,1994. - P. Dierckx. On calculating normalized
Powell-Sabin B-splines. CAGD, 15(1)6178, 1997. - J. Windmolders and P. Dierckx. From PS-splines to
NURPS. Proc. of Curve and Surface Fitting,
Saint-Malo, 4554. 1999. - E. Vanraes, J. Windmolders, A. Bultheel, and P.
Dierckx. Automatic construction of control
triangles for subdivided Powel-Sabin splines.
CAGD, 21(7)671682, 2004. - J. Maes, A. Bultheel. Modeling sphere-like
manifolds with spherical PowellSabin B-splines.
CAGD, 24 7989, 2007. - H. Speleers, P. Dierckx, and S. Vandewalle.
Weight control for modelling with NURPS surfaces.
CAGD, 24(3)179186, 2007. - D. Sbibih, A. Serghini, A. Tijini. Polar forms
and quadratic spline quasi-interpolants on
PowellSabin partitions. IMA Applied Numerical
Mathematic, 2008. - H. Speleers, P. Dierckx, S. Vandewalle.
Quasi-hierarchical PowellSabin B-splines. CAGD,
2008.
5Authors
Paul Dierckx
- Professor at
- Katholieke Universiteit Leuven(????),
- Computerwetenschappen.
- Research Interests
- Splines functions, Powell-Sabinsplines.
- Curves and Surface fitting.
- Computer Aided Geometric Design.
- Numerical Simulation.
6Authors
Stefan Vandewalle
Professor at Katholieke Universiteit Leuven,
Faculty of, CS
- Research Projects
- Algebraic multigrid for electromagnetics.
- High frequency oscillatory integrals and
- integral equations.
- Stochastic and fuzzy finite element methods.
- Optimization in Engineering.
- Multilevel time integration methods.
7Problem State (Powell,Sabain,1977)
9 conditions vs. 6 coefficients
8A lemma
9PS refinement
Nine degrees of freedom
10PS refinement
The dimension equals 3n.
11Other refinement
12A theorem
13Normalized PS-spline(Dierckx, 97)
- Local support
- Convex partition of unity.
- Stability
14Obtain the basis function
Step 1.
15Obtain the basis function
Step 2.
16Obtain the basis function
Step 3.
17Obtain the basis function
Step 4.
18PS-splines
19Choice of PS triangles
- To calculate triangles of minimal area
- Simplify the treatment of boundary conditions
20PS control triangles
21PS control triangles
22A Bernstein-Bézier representation
23A Powell-Sabin surface
24Local support(Dierckx,92)
25Explicit expression for PS-splines
26Normalized PS B-splines
- Necessary and sufficient conditions
27The control points
28The control points
29(No Transcript)
30The Bézier ordinates of a PS-spline
31Spline subdivision(Vanraes, 2004)
- Refinement rules of the triangulation
32Refinement rules
33(No Transcript)
34(No Transcript)
35Construction of refined control triangles
36Triadically subdivided spline
37Application
38(No Transcript)
39(No Transcript)
40(No Transcript)
41QHPS(Speleers,08)
42(No Transcript)
43Data fitting
44Data fitting
45(No Transcript)
46(No Transcript)
47Rational Powell-Sabin surfaces
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52B-spline representation for PS splines on the
sphere(Maes,07)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57