Computer aided geometric design with PowellSabin splines - PowerPoint PPT Presentation

1 / 57
About This Presentation
Title:

Computer aided geometric design with PowellSabin splines

Description:

Automatic construction of control triangles for subdivided Powel-Sabin splines. ... Polar forms and quadratic spline quasi-interpolants on Powell Sabin partitions. ... – PowerPoint PPT presentation

Number of Views:130
Avg rating:3.0/5.0
Slides: 58
Provided by: CAGD
Category:

less

Transcript and Presenter's Notes

Title: Computer aided geometric design with PowellSabin splines


1
Computer aided geometric designwith
Powell-Sabin splines
  • Speaker ? ?
  • 2008.10.29

Ph.D Student Seminar
2
What is it?
  • C1-continuous
  • quadratic splines
  • defined on an arbitrary triangulation
  • in Bernstein-Bézier representation

3
Why use it?
  • PS-Splines vs. NURBS
  • suited to represent strongly irregular objects
  • PS-Splines vs. Bézier triangles
  • smoothness

4
Main works
  • M.J.D. Powell, M.A. Sabin. Piecewise quadratic
    approximations on triangles. ACM Trans. Math.
    Softw., 3316325, 1977.
  • P. Dierckx, S.V. Leemput, and T. Vermeire.
    Algorithms for surface fitting using Powell-Sabin
    splines, IMA Journal of Numerical Analysis, 12,
    271-299, 1992.
  • K. Willemans, P. Dierckx. Surface fitting using
    convex Powell-Sabin splines, JCAM, 56,
    263-282,1994.
  • P. Dierckx. On calculating normalized
    Powell-Sabin B-splines. CAGD, 15(1)6178, 1997.
  • J. Windmolders and P. Dierckx. From PS-splines to
    NURPS. Proc. of Curve and Surface Fitting,
    Saint-Malo, 4554. 1999.
  • E. Vanraes, J. Windmolders, A. Bultheel, and P.
    Dierckx. Automatic construction of control
    triangles for subdivided Powel-Sabin splines.
    CAGD, 21(7)671682, 2004.
  • J. Maes, A. Bultheel. Modeling sphere-like
    manifolds with spherical PowellSabin B-splines.
    CAGD, 24 7989, 2007.
  • H. Speleers, P. Dierckx, and S. Vandewalle.
    Weight control for modelling with NURPS surfaces.
    CAGD, 24(3)179186, 2007.
  • D. Sbibih, A. Serghini, A. Tijini. Polar forms
    and quadratic spline quasi-interpolants on
    PowellSabin partitions. IMA Applied Numerical
    Mathematic, 2008.
  • H. Speleers, P. Dierckx, S. Vandewalle.
    Quasi-hierarchical PowellSabin B-splines. CAGD,
    2008.

5
Authors
Paul Dierckx
  • Professor at
  • Katholieke Universiteit Leuven(????),
  • Computerwetenschappen.
  • Research Interests
  • Splines functions, Powell-Sabinsplines.
  • Curves and Surface fitting.
  • Computer Aided Geometric Design.
  • Numerical Simulation.

6
Authors
Stefan Vandewalle
Professor at Katholieke Universiteit Leuven,
Faculty of, CS
  • Research Projects
  • Algebraic multigrid for electromagnetics.
  • High frequency oscillatory integrals and
  • integral equations.
  • Stochastic and fuzzy finite element methods.
  • Optimization in Engineering.
  • Multilevel time integration methods.

7
Problem State (Powell,Sabain,1977)
9 conditions vs. 6 coefficients
8
A lemma
9
PS refinement
Nine degrees of freedom
10
PS refinement
The dimension equals 3n.
11
Other refinement
12
A theorem
13
Normalized PS-spline(Dierckx, 97)
  • Local support
  • Convex partition of unity.
  • Stability

14
Obtain the basis function
Step 1.
15
Obtain the basis function
Step 2.
16
Obtain the basis function
Step 3.
17
Obtain the basis function
Step 4.
18
PS-splines
19
Choice of PS triangles
  • To calculate triangles of minimal area
  • Simplify the treatment of boundary conditions

20
PS control triangles
21
PS control triangles
22
A Bernstein-Bézier representation
23
A Powell-Sabin surface
24
Local support(Dierckx,92)
25
Explicit expression for PS-splines
26
Normalized PS B-splines
  • Necessary and sufficient conditions

27
The control points
28
The control points
29
(No Transcript)
30
The Bézier ordinates of a PS-spline
31
Spline subdivision(Vanraes, 2004)
  • Refinement rules of the triangulation

32
Refinement rules
33
(No Transcript)
34
(No Transcript)
35
Construction of refined control triangles
36
Triadically subdivided spline
37
Application
  • Visualization

38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
QHPS(Speleers,08)
42
(No Transcript)
43
Data fitting
44
Data fitting
45
(No Transcript)
46
(No Transcript)
47
Rational Powell-Sabin surfaces
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
B-spline representation for PS splines on the
sphere(Maes,07)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
  • Thank you!
Write a Comment
User Comments (0)
About PowerShow.com