Some Fundamental Insights of Computational Complexity Theory - PowerPoint PPT Presentation

About This Presentation
Title:

Some Fundamental Insights of Computational Complexity Theory

Description:

3-Coloring. Discrete Log. Factoring. Primality testing RP. Verifying polynomial identities ... COLORING PLANAR MAPS. THM [AH] EVERY PLANAR MAP IS 4-COLORABLE ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 16
Provided by: hugu
Learn more at: https://www.math.ias.edu
Category:

less

Transcript and Presenter's Notes

Title: Some Fundamental Insights of Computational Complexity Theory


1
Some FundamentalInsights of ComputationalComplex
ity Theory
  • Avi Wigderson
  • IAS, Princeton, NJ
  • Hebrew University, Jerusalem

2
Complexity of Functions
3
Complexity Classes
Counting Problems Non-DET Efficient Verificatio
n Efficient Prob. Time Efficient DET.
Time Memory Efficient ALGS
  • Permanent P
  • Satisfyability
    NP
  • 3-Coloring
  • Discrete Log
  • Factoring
  • Primality testing
    RP
  • Verifying polynomial identities

? F E A S I B L E
  • Max Flow P
  • Linear Programming
  • Determinant L
  • Graph Connectivity

4
COMP
COMP
Axiom FACTORING is HARD ?
COMPUTATION
RANDOMNESS
ENTROPY
CRYPTOGRAPHY
KNOWLEDGE
LEARNING
PROOFS
FORMAL RIGOROUS theorems
5
COLORING PLANAR MAPS
THM AH EVERY PLANAR MAP IS 4-COLORABLE
FACT NOT EVERY PLANAR MAP IS 3-COLORABLE
6
THM IF 3-COL IS EASY
THEN FACTOR IS EASY
NP EFFICIENTLY VERIFIABLE PROOFS
EFFICIENT REDUCTIONS
COMPLETENESS
7
NP - COMPLETENESS
P NP? Among the most important scientific
open problems
8
CRYPTOGRAPHY DH
DIGITAL ENVELOPE GM R RSA
PUBLIC KEY ENCRYPTION
DIGITAL SIGNATURES
THE MILLIONAIRES PROBLEM
EVERYTHING!
9
OBLIVIOUS COMPUTATION Y
ALICE
BOB
f(x,y)


?
?
?
?
?
SMALL BOOLEAN CIRCUIT
?
?
?
f(x,y)
?MANY PLAYERS GMW
?NO CHEATERS!
10
PRIVACY vs. FAULT TOLERANCE
Zero Knowledge Interactive Proofs GMR
  • Convincing
  • Reveal no information

THMGMW Every theorem has a ZK-Proof
Corollary Fault-tolerant protocols
11
METRICS ON PROB. DISTRIBUTIONS
D probability distribution on 0,1k
Uk uniform distribution
12
COMPUTATIONAL ENTROPY ?
HARDNESS AMPLIFICATION
THMBM,Y D1(f(x),b(x)) is pseudorandom
THMBM,Y Dk(b(f(k)(x)),...b(f(x)),b(x)) is p.r.
13
BMY PSEUDO-RANDOM GENERATORS
  • PRIVATE KEY CRYPTOGRAPHY
  • PSEUDO-RANDOM FUNCTION
  • LEARNING
  • PROOFS OF HARDNESS
  • DERANDOMIZING PROBABILISTIC ALGS

14
HARDNESS vs. RANDOMNESS
A efficient probabilistic alg. for h ? input z
Y Det. Simulation Enumerate all s? 0,1n
C(EXP-Time) NW a different
C(Permanent) pseudo-random generator C(Satisfiab
ility)
15
OPEN PROBLEMS
PROVE Axiom
PROVE Any Lower Bound
PROJECTION REDUCTIONS
Write a Comment
User Comments (0)
About PowerShow.com