Title: Some Fundamental Insights of Computational Complexity Theory
1Some FundamentalInsights of ComputationalComplex
ity Theory
- Avi Wigderson
- IAS, Princeton, NJ
- Hebrew University, Jerusalem
2Complexity of Functions
3Complexity Classes
Counting Problems Non-DET Efficient Verificatio
n Efficient Prob. Time Efficient DET.
Time Memory Efficient ALGS
- Satisfyability
NP - 3-Coloring
- Discrete Log
- Factoring
- Primality testing
RP - Verifying polynomial identities
? F E A S I B L E
- Max Flow P
- Linear Programming
- Determinant L
- Graph Connectivity
4COMP
COMP
Axiom FACTORING is HARD ?
COMPUTATION
RANDOMNESS
ENTROPY
CRYPTOGRAPHY
KNOWLEDGE
LEARNING
PROOFS
FORMAL RIGOROUS theorems
5COLORING PLANAR MAPS
THM AH EVERY PLANAR MAP IS 4-COLORABLE
FACT NOT EVERY PLANAR MAP IS 3-COLORABLE
6THM IF 3-COL IS EASY
THEN FACTOR IS EASY
NP EFFICIENTLY VERIFIABLE PROOFS
EFFICIENT REDUCTIONS
COMPLETENESS
7NP - COMPLETENESS
P NP? Among the most important scientific
open problems
8CRYPTOGRAPHY DH
DIGITAL ENVELOPE GM R RSA
PUBLIC KEY ENCRYPTION
DIGITAL SIGNATURES
THE MILLIONAIRES PROBLEM
EVERYTHING!
9OBLIVIOUS COMPUTATION Y
ALICE
BOB
f(x,y)
?
?
?
?
?
SMALL BOOLEAN CIRCUIT
?
?
?
f(x,y)
?MANY PLAYERS GMW
?NO CHEATERS!
10PRIVACY vs. FAULT TOLERANCE
Zero Knowledge Interactive Proofs GMR
- Convincing
- Reveal no information
THMGMW Every theorem has a ZK-Proof
Corollary Fault-tolerant protocols
11METRICS ON PROB. DISTRIBUTIONS
D probability distribution on 0,1k
Uk uniform distribution
12COMPUTATIONAL ENTROPY ?
HARDNESS AMPLIFICATION
THMBM,Y D1(f(x),b(x)) is pseudorandom
THMBM,Y Dk(b(f(k)(x)),...b(f(x)),b(x)) is p.r.
13BMY PSEUDO-RANDOM GENERATORS
- DERANDOMIZING PROBABILISTIC ALGS
14HARDNESS vs. RANDOMNESS
A efficient probabilistic alg. for h ? input z
Y Det. Simulation Enumerate all s? 0,1n
C(EXP-Time) NW a different
C(Permanent) pseudo-random generator C(Satisfiab
ility)
15OPEN PROBLEMS
PROVE Axiom
PROVE Any Lower Bound
PROJECTION REDUCTIONS