MA5233: Computational Mathematics - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

MA5233: Computational Mathematics

Description:

– PowerPoint PPT presentation

Number of Views:379
Avg rating:3.0/5.0
Slides: 38
Provided by: mathN9
Category:

less

Transcript and Presenter's Notes

Title: MA5233: Computational Mathematics


1
MA5233 Computational Mathematics
  • Weizhu Bao
  • Department of Mathematics
  • Center for Computational Science and
    Engineering
  • National University of Singapore
  • Email bao_at_math.nus.edu.sg
  • URL http//www.math.nus.edu.sg/bao

2
Computational Science
  • Third paradigm for
  • Discovery in Science
  • Solving scientific
  • engineering problems
  • Interdisciplinary
  • Problem-driven
  • Mathematical models
  • Numerical methods
  • Algorithmic aspects
  • computer science
  • Programming
  • Software
  • Applications,

3
Dynamics of soliton in quantum physics
4
Wave interaction in plasma physics
5
Wave interaction in particle physics
6
Vortex-pair dynamics in superfluidity
7
Vortex-dipole dynamics in superfluidity
8
Vortex lattice dynamics in superfluidity
9
Vortex lattice dynamics in BEC
10
Computational Science
  • Computational Mathematics Scientific
    computing/numerical analysis
  • Computational Physics
  • Computational Chemistry
  • Computational Biology
  • Computational Fluid Dynamics
  • Computational Enginnering
  • Computational Materials Sciences
  • ...

11
Steps for solving a practical problems
  • Physical or engineering problems
  • Mathematical model physical laws
  • Analytical methods existence, regularity,
    solution,
  • Numerical methods discretization
  • Programming -- coding
  • Results -- computing
  • Compare with experimental results

12
Computational Mathematics
  • Numerical analysis/Scientific computing
  • A branch of mathematics interested in
    constructive methods
  • Obtain numerically the solution of mathematical
    problems
  • Theory or foundation of computational science
  • Develop new numerical methods
  • Computational error analysis
  • Stability
  • Convergence
  • Convergence rate or order of accuracy,.

13
History
  • Numerical analysis can be traced back to a
    symposium with the title Problems for the
    Numerical Analysis of the Future, UCLA, July
    29-31, 1948.
  • Volume 15 in Applied Mathematics Series, National
    Bureau of Standards
  • Boom of research and applications Fluid flow,
    weather prediction, semiconductor, physics,

14
Milestone Algorithms
  • 1901 Runge-Kutta methods for ODEs
  • 1903 Cholesky decomposition
  • 1926 Aitken acceleration process
  • 1946 Monte Carlo method
  • 1947 The simplex algorithm
  • 1955 Romberg method
  • 1956 The finite element method

15
Milestone algorithms
  • 1957 The Fortran optimizing compiler
  • 1959 QR algorithm
  • 1960 Multigrid method
  • 1965 Fast Fourier transform (FFT)
  • 1969 Fast matrix manipulations
  • 1976 High Performance computing packages
    LAPACK, LINPACK Matlab
  • 1982 Wavelets
  • 1982 Fast Multipole method

16
Top 10 Algorithms
  • 1946 Monte Carlo method
  • 1947 Simplex method for linear programming
  • 1950 Krylov subspace iterative methods
  • 1951 Decompositional approach for matrix
    computation
  • 1957 Fortran optimizing compiler
  • 1959-61 QR algorithms
  • 1962 Quicksort
  • 1965 Fast Fourier Transform (FFT)
  • 1977 Integer relation detection algorithm
  • 1982 Fast multipole algorithm
  • http//amath.colorado.edu/resources/archive/top
    ten.pdf

17
Contents
  • Basic numerical methods
  • Round-off error
  • Function approximation and interpolation
  • Numerical integration and differentiation
  • Numerical linear algebra
  • Linear system solvers
  • Eigenvalue probems
  • Numerical ODE
  • Nonlinear equations solvers optimization

18
Contents
  • Numerical PDE
  • Finite difference method (FDM)
  • Finite element method (FEM)
  • Finite volume method (FVM)
  • Spectral method
  • Problem driven research
  • Computational Fluid dynamics (CFD)
  • Computational physics
  • Computational biology,

19
How to do it well
  • Three key factors
  • Master all kinds of different numerical methods
  • Know and aware the progress in the applied
    science
  • Know and aware the progress in PDE or ODE
  • Ability for a graduate student
  • Solve problem correctly
  • Write your results neatly
  • Speak your results well and clear presentation
  • Find good problems to solve

20
Numerical error
  • Example 1
  • Example 2
  • Example 3
  • Example 4

21
Numerical error
  • Truncation error or error of the method
  • Round-off error due to finite digits of numbers
    in computer
  • Numerical errors for practical problems
  • Truncation error
  • Round-off error
  • Model error observation error empirical error
    etc.

22
Absolute error
  • Absolute error
  • Absolute error bound (not unique!!)

23
Relative error
  • An example
  • Relative error
  • Relative error bound

24
Absolute error bounds for basic operations
  • Suppose
  • Error bounds

25
Significant digits
  • An example
  • Definition n significant digits
  • Method
  • Write in the standard form
  • Count the number of digits after decimal

26
Error spreading An example
  • Algorithm 1
  • Use 4 significant digits for practical
    computation
  • Results

27
Error spreading An example
  • Algorithm 2
  • Result
  • Truncation error analysis

28
Convergence and its rate
  • Numerical integration
  • Exact solution

29
Numerical methods
  • Composite midpoint rule
  • Composite Simpsons rule
  • Composite trapezoidal rule
  • Error estimate

30
Numerical results
31
Numerical errors
32
Observations
  • Before h0
  • Truncation error is too large !!
  • After h1
  • Round-off error is dominated!!
  • Between h0 and h1
  • Clear order of accuracy is observed for the
    method
  • We can observe clear convergence rate for proper
    region of the mesh size!!!

33
Numerical Differentiation
  • Numerical differentiation
  • The total error

34
Numerical Differentiation
35
Numerical Differentiation
  • Total error depends
  • Truncation error
  • Round-off error
  • Minimizer of E(h)
  • Double precision
  • Clear region to observe truncation error

36
How to determine order of accuracy
  • Numerical approximation or method
  • How to determine p and C??
  • By plot log E(h) vs log h

37
How to determine order of accuracy
  • By quotation
Write a Comment
User Comments (0)
About PowerShow.com