Abstraction and Refinement in Protocol Derivation - PowerPoint PPT Presentation

About This Presentation
Title:

Abstraction and Refinement in Protocol Derivation

Description:

Abstraction and Refinement in Protocol Derivation. Anupam Datta Ante Derek ... Abstraction-Instantiation using protocol templates: ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 29
Provided by: andre4
Category:

less

Transcript and Presenter's Notes

Title: Abstraction and Refinement in Protocol Derivation


1
Abstraction and Refinement in Protocol Derivation
  • Anupam Datta Ante Derek
  • John C. Mitchell Dusko Pavlovic
  • Stanford University Kestrel Institute
  • CSFW June 28, 2004

2
Project Goals
  • Protocol derivation
  • Build security protocols by combining and
    refining parts from basic protocols.
  • Proof of correctness
  • Prove protocols correct using logic that follows
    steps of derivation.

3
Outline
  • Background
  • Derivation System CSFW03
  • Compositional Logic
    CSFW01,CSFW03
  • Abstraction and Refinement
  • Methods
  • Applications
  • Conclusions and Future Work

4
Example
  • Construct protocol with properties
  • Shared secret
  • Authenticated
  • Identity Protection
  • Design requirements for IKE, JFK, IKEv2 (IPSec
    key exchange protocol)

5
Component 1
Diffie Hellman
A ? B ga B ? A gb
  • Shared secret (with someone)
  • A deduces
  • Knows(Y, gab) ? (Y A) ? Knows(Y,b)
  • Authenticated
  • Identity Protection

6
Component 2
Challenge-Response
A ? B m, A B ? A n, sigB m, n, A A ?
B sigA m, n, B
  • Shared secret
  • Authenticated
  • A deduces Received (B, msg1) ? Sent (B, msg2)
  • Identity Protection

7
Composition
m ga n gb
ISO-9798-3
A ? B ga, A B ? A gb, sigB ga, gb, A A ? B
sigA ga, gb, B
  • Shared secret gab
  • Authenticated
  • Identity Protection

8
Refinement
Encrypt Signatures
A ? B ga, A B ? A gb, EK sigB ga, gb, A A
? B EK sigA ga, gb, B
  • Shared secret gab
  • Authenticated
  • Identity Protection

9
Outline
  • Background
  • Derivation System
  • Compositional Logic
  • Abstraction and Refinement
  • Methods
  • Applications
  • Conclusions and Future Work

10
Challenge-Response Proof Idea
m, A
n, sigB m, n, A
A
B
sigA m, n, B
  • Alice reasons if Bob is honest, then
  • only Bob can generate his signature. protocol
    independent
  • if Bob generates a signature of the form sigB m,
    n, A,
  • he sends it as part of msg 2 of the protocol and
  • he must have received msg1 from Alice. protocol
    specific
  • Alice deduces Received (B, msg1) ? Sent (B, msg2)

11
Formalism
  • Cord calculus
  • Protocol programming language
  • Protocol logic
  • Expressing protocol properties
  • Proof system
  • Proving protocol properties

Symbolic (Dolev-Yao) model
12
Challenge-Response as Cords
m, A
n, sigB m, n, A
A
B
sigA m, n, B
RespCR(B) receive Y, B, y, Y new n send
B, Y, n, sigBy, n, Y receive Y, B, sigYy, n,
B
InitCR(A, X) new m send A, X, m,
A receive X, A, x, sigXm, x, A send A, X,
sigAm, x, X
13
Correctness of CR
InitCR(A, X) new m send A, X, m,
A receive X, A, x, sigXm, x, A send A,
X, sigAm, x, X
RespCR(B) receive Y, B, y, Y new
n send B, Y, n, sigBy, n, Y receive Y, B,
sigYy, n, B
CR - InitCR(A, B) A Honest(B) ?
ActionsInOrder( Send(A, A,B,m),
Receive(B, A,B,m), Send(B, B,A,n,
sigB m, n, A), Receive(A, B,A,n, sigB
m, n, A) )
14
Proof System
  • Sample Axioms
  • Reasoning about possession
  • Has(A, mK) ? Has(A, K) ? Has(A, m)
  • Has(A, m,n) ? Has(A, m) ? Has(A, n)
  • Reasoning about crypto primitives
  • Honest(X) ? ?Decrypt(Y, encXm) ? XY
  • Honest(X) ? ?Verify(Y, sigXm) ?
  • ? m (?Send(X, m) ? Contains(m, sigXm)
  • Protocol-specific Rule Honesty/Invariance rule
  • Soundness Theorem
  • Every provable formula is valid

15
Outline
  • Background
  • Derivation System
  • Compositional Logic
  • Abstraction and Refinement
  • Methods
  • Applications
  • Conclusions and Future Work

16
Protocol Templates
  • Protocols with function variables instead of
    specific cryptographic operations
  • Idea One template can be instantiated to many
    protocols
  • Advantages
  • proof reuse
  • design principles/patterns

17
Example
Challenge-Response Template
A ? B m B ? A n, F(B,A,n,m) A ? B
G(A,B,n,m)
Abstraction
A ? B m B ? A n,EKAB(n,m,B) A ? B
EKAB(n,m)
A ? B m B ? A n,HKAB(n,m,B) A ? B
HKAB(n,m,A)
A ? B m B ? A n, sigB(n,m,A) A ? B
sigA(n,m,B)
ISO-9798-2
ISO-9798-3
SKID3
Instantiations
18
Extending Formalism
  • Language Extensions Add function variables to
    term language for cords and logic (HOL)
  • Semantics Q f ? sQ sf, for all
    substitutions s eliminating all function
    variables
  • Soundness Theorem Every provable formula is
    valid

19
Abstraction-Instantiation Method(1)
  • Characterizing protocol concepts
  • Step 1 Under hypotheses about function variables
    and invariants, prove security property of
    template
  • Step 2 Instantiate function variables to
    cryptographic operations and prove hypotheses.
  • Benefit
  • Proof reuse

20
Example
Challenge-Response Template
A ? B m B ? A n, F(B,A,n,m) A ? B
G(A,B,n,m)
  • Step 1
  • Hypotheses Function F(B,A,n,m) can be computed
    only by B or A,
  • Property Mutual authentication
  • Step 2
  • Instantiate F() to signature, keyed hash,
    encryption (ISO-9798-2,3, SKID3)
  • Satisfies hypotheses gt Guarantees mutual
    authentication

21
Proof Structure
Discharge hypothesis
axiom
hypothesis
Proof reuse
Instance
Template
22
Abstraction-Instantiation Method(2)
  • Combining protocol templates
  • If protocol P is a hypotheses-respecting
    instance of two different templates, then it has
    the properties of both.
  • Benefits
  • Modular proofs of properties
  • Formalization of protocol refinements

23
Refinement Example Revisited
Encrypt Signatures
A ? B ga, A B ? A gb, EK sigB ga, gb, A A
? B EK sigA ga, gb, B
  • Two templates
  • Template 1 authentication shared secret
  • (Preserves existing properties proof reused)
  • Template 2 identity protection (encryption)
  • (Adds new property)

24
Authenticated key exchange
AKE1
AKE2
A ? B ga, A B ? A gb, F(B,A,gb,ga) A ?
B G(A,B,ga,gb)
A ? B ga B ? A gb, F(B,gb,ga),
F(B,gab) A ? B G(A,ga, gb), G(A,gab)
ISO-9798-3, JFKi
STS, JFKr, IKEv2, SIGMA
  • Shared secret
  • Stronger authentication
  • Identity protection for B
  • Non-repudiation
  • Shared secret
  • Weaker authentication
  • Identity protection for A
  • Repudiability

H. Krawczyk The Cryptography of the IPSec and
IKE Protocols CRYPTO03
25
More examples
  • Authenticated Key Exchange
  • Template for JFKr, STS, IKE, IKEv2
  • Key Computation
  • Template for Diffie-Hellman, UM, MTI/A, MQV
  • Combining these templates

26
Synthesis STS-MQV
protect identities
symmetric hash
STSPH
STSP
DH
STS
RFK
cookie
authenticate
MTI/A
MTIC
MTICPH
MTIRFK
MTICP
key conf.
UM
UMC
UMCP
UMCPH
UMRFK
MQV
MQVRFK
MQVCPH
MQVCP
MQVC
27
Conclusions
  • Abstraction-Instantiation using protocol
    templates
  • Single proof for similar protocols from common
    template
  • Multiple protocol properties from different
    templates
  • Logical foundation
  • Add function variables to protocol language and
    logic
  • Applications
  • CR template ISO-9798-2,3, SKID3
  • Identity protection refinement in JFK
  • Design principles IKEv2, JFKi, JFKr, ISO, STS,
    SIGMA, IKE
  • Synthesis DH-MQV STS-JFKr

28
Future Work
  • Done
  • Derivation idea successfully applied to large set
    of protocol examples
  • Rigorous treatment of composition, refinement in
    protocol logic
  • Work In Progress
  • Tool support for derivation system and logic
  • Formalization of protocol transformations
  • More applications
Write a Comment
User Comments (0)
About PowerShow.com