PROJECTILE MOTION Senior High School Physics - PowerPoint PPT Presentation

About This Presentation
Title:

PROJECTILE MOTION Senior High School Physics

Description:

PROJECTILE MOTION Senior High School Physics Lech Jedral 2006 Part 1. Part 2. Free powerpoints at http://www.worldofteaching.com Introduction Projectile Motion ... – PowerPoint PPT presentation

Number of Views:3685
Avg rating:3.0/5.0
Slides: 33
Provided by: LechJ
Category:

less

Transcript and Presenter's Notes

Title: PROJECTILE MOTION Senior High School Physics


1
PROJECTILE MOTIONSenior High School Physics
  • Lech Jedral
  • 2006

Part 1.
Part 2.
Free powerpoints at http//www.worldofteaching.com
2
Introduction
  • Projectile Motion
  • Motion through the air without a propulsion
  • Examples

3
Part 1.Motion of Objects Projected Horizontally
4
y
v0
x
5
y
x
6
y
x
7
y
x
8
y
x
9
y
  • Motion is accelerated
  • Acceleration is constant, and downward
  • a g -9.81m/s2
  • The horizontal (x) component of velocity is
    constant
  • The horizontal and vertical motions are
    independent of each other, but they have a common
    time

g -9.81m/s2
x
10
  • ANALYSIS OF MOTION
  • ASSUMPTIONS
  • x-direction (horizontal) uniform motion
  • y-direction (vertical) accelerated motion
  • no air resistance
  • QUESTIONS
  • What is the trajectory?
  • What is the total time of the motion?
  • What is the horizontal range?
  • What is the final velocity?

11
Frame of reference
Equations of motion
12
Trajectory
x v0 t
y h ½ g t2
Parabola, open down
Eliminate time, t
t x/v0 y h ½ g (x/v0)2 y h ½ (g/v02)
x2 y ½ (g/v02) x2 h
13
Total Time, ?t
?t tf - ti
y h ½ g t2
final y 0
0 h ½ g (?t)2
ti 0
Solve for ?t
tf ?t
Total time of motion depends only on the initial
height, h
14
Horizontal Range, ?x
x v0 t
final y 0, time is the total time ?t
?x v0 ?t
Horizontal range depends on the initial height,
h, and the initial velocity, v0
15
VELOCITY
vx v0
T
vy g t
16
FINAL VELOCITY
vx v0
T
vy g t
T is negative (below the horizontal line)
17
HORIZONTAL THROW - Summary
h initial height, v0 initial horizontal
velocity, g -9.81m/s2
18
Part 2.Motion of objects projected at an angle
19
Initial position x 0, y 0
20
y
a g - 9.81m/s2
  • Motion is accelerated
  • Acceleration is constant, and downward
  • a g -9.81m/s2
  • The horizontal (x) component of velocity is
    constant
  • The horizontal and vertical motions are
    independent of each other, but they have a common
    time

x
21
  • ANALYSIS OF MOTION
  • ASSUMPTIONS
  • x-direction (horizontal) uniform motion
  • y-direction (vertical) accelerated motion
  • no air resistance
  • QUESTIONS
  • What is the trajectory?
  • What is the total time of the motion?
  • What is the horizontal range?
  • What is the maximum height?
  • What is the final velocity?

22
Equations of motion
23
Equations of motion
24
Trajectory
x vi t cos T y vi t sin T ½ g t2
Parabola, open down
y
Eliminate time, t
t x/(vi cos T)
y bx ax2
x
25
Total Time, ?t
y vi t sin T ½ g t2
final height y 0, after time interval ?t
0 vi ?t sin T ½ g (?t)2
Solve for ?t
x
t 0 ?t
26
Horizontal Range, ?x
x vi t cos T
y
final y 0, time is the total time ?t
?x vi ?t cos T
x
0
?x
sin (2 T) 2 sin T cos T
27
Horizontal Range, ?x
  • CONCLUSIONS
  • Horizontal range is greatest for the throw angle
    of 450
  • Horizontal ranges are the same for angles T and
    (900 T)

28
Trajectory and horizontal range
vi 25 m/s
29
Velocity
  • Final speed initial speed (conservation of
    energy)
  • Impact angle - launch angle (symmetry of
    parabola)

30
Maximum Height
vy vi sin T g t
y vi t sin T ½ g t2
At maximum height vy 0
0 vi sin T g tup
tup ?t/2
31
Projectile Motion Final Equations
(0,0) initial position, vi vi T initial
velocity, g -9.81m/s2
2 vi sin T
(-g)
vi2 sin2 T
2(-g)
32
PROJECTILE MOTION - SUMMARY
  • Projectile motion is motion with a constant
    horizontal velocity combined with a constant
    vertical acceleration
  • The projectile moves along a parabola
Write a Comment
User Comments (0)
About PowerShow.com