Title: Inputs and Production Functions
1 Lecture 10 Inputs and Production
Functions (cont.) Lecturer Martin Paredes
2Outline
- The Production Function (conclusion)
- Elasticity of Substitution
- Some Special Functional Forms
- Returns to Scale
- Technological Progress
3Elasticity Of Substitution
- Definition The elasticity of substitution
measures how the capital-labor ratio, K/L,
changes relative to the change in the MRTSL,K. - ? ? (K/L) d (K/L) . MRTSL,K
? MRTSL,K d MRTSL,K (K/L) - In other words, it measures how quickly the
MRTSL,K changes as we move along an isoquant.
4Elasticity Of Substitution
- Notes
- In other words, the elasticity of substitution
measures how quickly the MRTSL,K changes as we
move along an isoquant. - The capital-labor ratio (K/L) is the slope of any
ray from the origin to the isoquant.
5- Example Elasticity of Substitution
- Suppose that
- At point A MRTSAL,K 4 KA/LA 4
- At point B MRTSBL,K 1 KB/LB 1
- What is the elasticity of substitution?
6K
Example The Elasticity of Substitution
MRTSA 4
KA /LA 4
A
Q
L
0
7K
Example The Elasticity of Substitution
MRTSA
KA /LA
A
KB/LB 1
B
Q
MRTSB 1
L
0
8Example Elasticity of Substitution ? (K/L)
-3 / 4 - 75 ? MRTSL,K -3 / 4 - 75
? ? (K/L) - 75 1 ?
MRTSL,K - 75
9Special Functional Forms
- Linear Production Function
- Q aL bK
- where a,b are positive constants
- Properties
- MRTSL,K MPL a (constant)
MPK b - Constant returns to scale
- ? ?
10K
Example Linear Production Function
Q0
L
0
11K
Example Linear Production Function
Slope -a/b
Q1
Q0
L
0
12Special Functional Forms
- Fixed Proportions Production Function
- Q min(aL, bK)
- where a,b are positive constants
- Also called the Leontief Production Function
- L-shaped isoquants
- Properties
- MRTSL,K 0 or ? or undefined
- ? 0
13Frames
Example Fixed Proportion Production Function
Q 1 (bicycles)
1
0
Tires
2
14Frames
Example Fixed Proportion Production Function
Q 2 (bicycles)
2
Q 1 (bicycles)
1
0
Tires
2 4
15Special Functional Forms
- Cobb-Douglas Production Function
- Q AL?K?
- where A, ?, ? are all positive constants
- Properties
- MRTSL,K MPL ?AL?-1K? ?K MPK
?AL?K?-1 ?L - ? 1
16K
Example Cobb-Douglas Production Function
Q Q0
0
L
17K
Example Cobb-Douglas Production Function
Q Q1
Q Q0
0
L
18Special Functional Forms
- Constant Elasticity of Substitution Production
Function - Q (aL? bK?)1/?
- where ?, ?, ? are all positive constants
- In particular, ? (?-1)/?
- Properties
- If ? 0 gt Leontieff case
- If ? 1 gt Cobb-Douglas case
- If ? ? gt Linear case
19K
Example The Elasticity of Substitution
? 0
L
0
20K
Example The Elasticity of Substitution
? 0
? ?
L
0
21K
Example The Elasticity of Substitution
? 0
? 1
? ?
L
0
22K
Example The Elasticity of Substitution
? 0
?? 0.5
? 1
? ?
L
0
23K
Example The Elasticity of Substitution
? 0
?? 0.5
? 1
?? 5
? ?
L
0
24K
Example The Elasticity of Substitution
"The shape of the isoquant indicates the degree
of substitutability of the inputs"
? 0
?? 0.5
? 1
?? 5
? ?
L
0
25Returns to Scale
Definition Returns to scale is the concept that
tells us the percentage increase in output when
all inputs are increased by a given percentage.
Returns to scale ? Output . ?
ALL Inputs
26Returns to Scale
- Suppose we increase ALL inputs by a factor ?
- Suppose that, as a result, output increases by a
factor ?. - Then
- If ? gt ? gt Increasing returns to scale
- If ? ? gt Constant returns to scale
- If ? lt ? gt Decreasing returns to scale.