Diapositiva 1 - PowerPoint PPT Presentation

1 / 63
About This Presentation
Title:

Diapositiva 1

Description:

Diapositiva 1 – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 64
Provided by: brunabe
Category:
Tags: diapositiva | teva

less

Transcript and Presenter's Notes

Title: Diapositiva 1


1
The AMS-02 experiment on the ISS
p AMS Project physical motivations and AMS-01
experience
p Detector concept expected performances
p Status and perspectives
Bruna Bertucci University and INFN Perugia
2
AMS Collaboration
FINLAND
RUSSIA
HELSINKI UNIV. UNIV. OF TURKU
I.K.I. ITEP KURCHATOV INST. MOSCOW STATE UNIV.
DENMARK
UNIV. OF AARHUS
NETHERLANDS
GERMANY
ESA-ESTEC NIKHEF NLR
RWTH-I RWTH-III MAX-PLANK INST. UNIV. OF KARLSRUHE
KOREA
USA
EWHA KYUNGPOOK NAT.UNIV.
AM FLORIDA UNIV. JOHNS HOPKINS UNIV. MIT -
CAMBRIDGE NASA GODDARD SPACE FLIGHT CENTER NASA
JOHNSON SPACE CENTER UNIV. OF MARYLAND-DEPRT OF
PHYSICS UNIV. OF MARYLAND-E.W.S. S.CENTER YALE
UNIV. - NEW HAVEN
FRANCE
ROMANIA
CHINA
BISEE (Beijing) IEE (Beijing) IHEP (Beijing) SJTU
(Shanghai) SEU (Nanjing) SYSU (Guangzhou) SDU
(Jinan)
GAM MONTPELLIER LAPP ANNECY LPSC GRENOBLE
ISS UNIV. OF BUCHAREST
SWITZERLAND
ETH-ZURICH UNIV. OF GENEVA
TAIWAN
SPAIN
CIEMAT - MADRID I.A.C. CANARIAS.
ITALY
ACAD. SINICA (Taiwan) CSIST (Taiwan) NCU (Chung
Li) NCKU (Tainan) NCTU (Hsinchu) NSPO (Hsinchu)
ASI CARSO TRIESTE IROE FLORENCE INFN UNIV. OF
BOLOGNA INFN UNIV. OF MILANO INFN UNIV. OF
PERUGIA INFN UNIV. OF PISA INFN UNIV. OF
ROMA INFN UNIV. OF SIENA
MEXICO
UNAM
PORTUGAL
LAB. OF INSTRUM. LISBON
500 physicists, 16 Countries, 56 Research
Institutes
Y96673-05_1Commitment
3
AMS project
Objective perform fundamental physics research
in space
Experiment large acceptance magnetic
spectrometer
AMS-01 (1995-1998)
  • Technical test of detector technology
    electronics
  • Particle detector in space
  • Safety issues

AMS-02
  • Search for nuclear antimatter up to TeV
  • Search for dark matter signatures (e,p-,?)
  • Deep study of CR composition and energy spectrum
    (H,He, B/C,9Be/10Be)
  • Gamma ray astrophysics

4
(No Transcript)
5
The AMS-01 Detector
6 planes of Silicon Tracker 3.2 X0, 10 ?m.
BL2 0.14 Tm2, ?P/P 7 at 10 GeV
Time of Flights 124 ps
Tracker
Aerogel
6
The AMS-01 Detector
6 planes of Silicon Tracker 3.2 X0, 10 ?m.
BL2 0.14 Tm2, ?P/P 7 at 10 GeV
7
AMS-01 Publications
?Search for Antihelium in Cosmic RaysPhys.
Lett. B461 (1999) 387-396?Protons in Near Earth
OrbitPhys. Lett. B472 (2000) 215-226?Leptons
in Near Earth OrbitPhys. Lett. B484 (2000)
10-22?Cosmic ProtonsPhys. Lett. B490 (2000)
27-35?Helium in Near Earth OrbitPhys. Lett.
B494 (2000) 193-202?The Alpha Magnetic
Spectrometer (AMS) on the International Space
Station, Part I, Results from the test flight on
the Space ShuttlePhysics Reports 366 (2002)
331-405
8
New AMS-01 publicationsubmitted to PLB
Cosmic positron fraction measurement From 1 to 50
GeV with AMS-01
9
(No Transcript)
10
(No Transcript)
11
AMS project
Objective perform fundamental physics research
in space
Experiment large acceptance magnetic
spectrometer conceived as a state of
the art instrument
AMS-01 (1995-1998)
  • Technical test of detector technology
    electronics
  • Particle detector in space
  • Safety issues

AMS-02
  • Search for nuclear antimatter up to TeV
  • Search for dark matter signatures (e,p-,?)
  • Deep study of CR composition and energy spectrum
    (H,He, B/C,9Be/10Be)
  • Gamma ray astrophysics

12
AMS-02 Design principles
  • High statistics ? large acceptance long
    exposure time
  • Negligible environmental background ? space
  • Optimize instrumental background ? minimum amount
    of material
  • Charge sign and Z measurement
  • Particle identification e/p 106
  • Mass measurement 9Be/10Be, D/H, 3He/4He

Acceptance 0.5 m2 sr Strong B field B 0.8
T Tracking 8 points _at_ 10?m Repeated
measurements of Z, velocity Complementary
techniques for e/p separation
13
AMS-02 Design principles
  • Safety / operational conditions on Shuttle and
    ISS
  • High vacuum conditions and radiation levels
  • Strong temperature gradients (-60ºC to 40ºC)
  • Vibrations (max 150 dB) acceleration (3g) at
    launch
  • Component eigenfrequency gt 50 Hz
  • Total weight 7 T
  • Total power consumption 3 kW

14
The AMS experiment
  • Superconducting magnet (BL2 0.85 Tm2)
  • Silicon Tracker (rigidity, charge)
  • Scintillator system (TOF) (ß, dE/dx, trigger)
  • Transition Radiation Detector (e/p)
  • Ring Imaging Cherenkov (ß, charge)

2 m 7 Tons
  • Electromagnetic Calorimeter(energy, e/p)
  • Anticoincidence counters, star-tracker, GPS
  • Also gamma rays in conversion or ECAL

Minimum amount of material crossed 0.4 Xo up to
ECAL
2 m
15
The AMS-02 detector
Silicon spectrometer design goals dR/R 1 up
to 100 GeV MDR 1 TV Z measurement up to Iron
16
Characteristics of AMS-02 ? t 100 ps, ?x 10
µm, ?v/v 0.001
y06K307
17
TRD DESIGN
p rejection gt102 1-300 GeV acceptance
0.45m2sr
  • Choosen configuration for 60 cm height
  • 20 Layers each existing of
  • 22 mm fibre fleece
  • Ø 6 mm straw tubes filled with Xe/CO2 80/20

12 layers in the bending plane 2 x 4 layers in
the non-bending plane
18
TRD Testbeam Results
?20 layer TRD detector in the test beam at CERN
in 2000 ?3 million events of p,e,?,? _at_
5-250 GeV
19
Superconducting magnet
  • 2 dipole coil, 12 racetrack coil ( no
    magnetic dipole moment)
  • B0.8 T, 1.1 m inner diameter, 2360 Kg weight
  • 55 Km of superconducting wire (NbTi/Cu embedded
    in pure aluminium)
  • Indirect cooling with superfluid helium (1.8 K)
  • 2500 liters helium vessel plus cryocoolers for 3
    years operation

20
Silicon Tracker
  • 8 layers of double sided silicon detectors
    arranged in 192 ladders
  • 5 honeycomb carbon fiber plane
  • detector material 0.04 Xo
  • total of 200 kchannels for 192 watt dissipated
    inside the magnet volume
  • 10 ?m (30 ?m) spatial resolution in bending (non
    bending) plane
  • momentum resol 1.5 at 10 GeV
  • high dynamic range front end for charge
    measurement
  • wide temperature range
  • (-20/40 survival, -10/25 oper.)

21
Silicon Tracker
  • 8 layers of double sided silicon detectors
    arranged in 192 ladders
  • 5 honeycomb carbon fiber plane
  • detector material 0.04 Xo
  • total of 200 kchannels for 192 watt dissipated
    inside the magnet volume
  • 10 ?m (30 ?m) spatial resolution in bending (non
    bending) plane
  • momentum resol 1.5 at 10 GeV
  • high dynamic range front end for charge
    measurement
  • wide temperature range
  • (-20/40 survival, -10/25 oper.)

22
Silicon Ladders
  • 1024 high dynamic range, AC coupled readout
    channels
  • 640 on junction (S) side
  • 384 on ohmic (K) side
  • Impl/readout pitch
  • 27.5/110 mm (S side)
  • 104/208 mm (K side)
  • 7 15 wafers (28 60 cm)

192 flight units, 210 assembled in 3 lines
Perugia (I), Geneva-ETHZ (CH), GA (Carsoli, I)
23
Residual Distributions
Proton Residuals
Helium Residuals
Lad3 p-side
Lad3 p-side
Residual (mm)
Residual (mm)
2 gaussian Fit
3 Gaussian Fit
1st Gaussian 70 of events 2nd Gaussian 30 of
events
1st Gaussian 63 of events 2nd Gaussian 34 of
events 3th Gaussian 3 of events
24
Rigidity res. and charge id.
AMS like config. 0.4 T mag. fiels
25
RICH CONCEPT
  • Dual solid radiator configuration
  • Low index aerogel (n1.05)
  • Sodium fluoride (n1.33)
  • Photomultiplier matrix
  • 10880 pixels
  • Spatial granularity 8.5 x 8.5 mm2
  • Conical reflector

Charge Z Velocity ?
Particle
Velocity
ß
Electric Charge
Z
26
TEST ON PERFORMANCES PROTOTYPE
Prototype reflector
Detector Plane (96 unit cells)
Cosmic ray station
27
TEST BEAM AT CERN with the RICH PROTOTYPE
2002 20 GeV/n Pb on Be target
Collision products p, D, He4, Li6,
2003 158 GeV/n In on Pb target
Charge measured with RICH
Ek/n158 GeV/n
28
TEST BEAM Aerogel radiator
  • Velocity resolution

Z 1
Z gt 1
RICH Test Beam E 158 GeV/n
Aerogel CIN 1.05
?(?) x 103
resolution per hit is the same for direct and
reflected hits
29
TEST BEAM NaF radiator
  • Velocity resolution

Z 2
Z gt 1
RICH Test Beam E 158 GeV/n
?(?) x 103
NaF Radiator
30
ECAL
e, ?
p,He
  • 3D imaging calorimeter e/p separation is
    achieved by sampling the em cascade with fine
    longitudinal and lateral granularity
  • 18 longitudinal samplings
  • (9 superlayers 18 layers)
  • Readout cell dimensions
  • 1X0 ? 0.5 rM

18.5mm
z
particle direction
y
x
31
Energy resolution
fit
Linearity within 1 up to 120 GeV after leakage
correction
32
What do we expect for physics measurements?
33
AMS-02 Antihelium Limits
y06K301
34
The AMS experiment will perform accurate, high
statistics (1091010), long duration (3 years)
measurements of energetic (0.1 GeV to 2 TeV)
cosmic ray spectra in space.
Relative Proton Fluxes(normalized to AMS-02
projected value)
Protons
AMS-02
(Projection)
TeV
35
Helium
Relative He Fluxes
(Projection)
TeV
36
Carbon
Relative C Fluxes
(Projection)
37
Iron
Relative Fe Fluxes
(Projection)
38
AMS-02 Deuteron to Proton Ratio
D/p
(98)
(Projection)
39
(Projection)
40
Electrons
(98)
(Projection)
TeV
41
Antiprotons
(Projection)
42
Positrons
(98)
(Projection)
0.3 TeV
43
J.J Beatty et al., PRL 93 (2004) 241102
A SUSY Model(LSP of 91 GeV)
(Projection)
y06K304b
44
Status perspectives
  • Space shuttle program
  • AMS integration

45
ISSAssembly
First Expedition Crew 2000
ISS 11A P1 Truss 2002
Laboratory, Solar Array, and Robot Arm 2001
ISS 12A P3/4 Truss w/Solar Array September 2006
ISS first two Elements Launched 1998
ISS 12A.1 P5 Install, P6 Port Solar Array
Retract ISS TODAY
ISS 13A S3/S4 Truss w/Solar Array Early Spring
2007
ISS 10A Node 2 Sets Stage for International
Partner Elements Late Summer 2007
http//vcl.jsc.nasa.gov/frame.cfm?catid1
46
1J Kibo Japanese Experiment Module Feb 2008
1E Columbus Module Oct 2007
15A 4th Starboard Truss Segment Jun 2008
20A Node 3 with Cupola Jan 2010
9R Research Module TBD
47
?
48
NASA Status for Alpha Magnetic Spectrometer (AMS)
Science Review

Trent Martin NASA AMS Project Manager
  • 25 September 2006

49
Construction of the sub-detectors is complete.
TRD e
Time of Flight v, Z
Magnet P
Silicon Tracker Z, P
RICH v, Z
Calorimeter e, g
Size 3m x 3m x 3m Weight 7 tons
50
TRACKER
51
ECAL
52
Radiator
RICH
Reflector
Light Collection
53
TRD
54
ACC
55
L-TOF
56
SUPERCONDUCTING MAGNET
p individual coil testing p assembled magnet
testing p valves testing p permanent switch
testing p strap testing p STA VC testing p He
vessel testing
p Magnet coils p Cooling pipes valves p
Permanent Switch p Straps p Helium vessel p
Vacuum Case(s)
57
MAGNET PRODUCTION AND ASSEMBLY
30C
58
MAGNET TEST RIG _at_ Scientific Magnetics
59
VACUUM CASE EXTENSIVE TESTING
Stress Test Article VC
p Vibration test in SERMS (Italy)
p Acoustic test in ESTEC (Netherlands)
p USS VC STA static load test in IABG (Germany)
60
VACUUM CASE EXTENSIVE TESTING
Stress Test Article VC
Cold Mass Replica
61
Italy Jan 07 Vibration test _at_
62
(No Transcript)
63
AMS Assembly Area _at_ CERN, Bdg 867
CLEAN ROOM AREA FOR AMS ASSEMBLY
64
Magnet installed into Unique Support Structure
(USS)
1
Magnet and USS placed into assembly stand
2
Magnet
USS
65
6
Upper TOF TRD assembled
attached
7
10
Install Thermal System
attached
9
Lower TOF RICH ECAL Lower USS assembled
8
66
45 day Thermal-Vacuum test at Noordwijk
TV TEST WITH FULL DETECTOR
67
Outlook Conclusions
  • NASA shuttle program is back on track
  • AMS assembly on track as well
  • PAMELA up in space, will give important inputs to
    AMS-02
  • AMS-02 will provide CR measurements of excellent
    precision starting from 2009
  • AMS-02 complements GLAST for ?-rays
  • Dark Matter and Antimatter sensitivities leave
    room for discoveries

68
THANKS TO THE ORGANIZERS OF THIS WORKSHOP !
Write a Comment
User Comments (0)
About PowerShow.com