Concurrent Combinators for Mobile Processes - PowerPoint PPT Presentation

About This Presentation
Title:

Concurrent Combinators for Mobile Processes

Description:

Concurrent Combinators for Mobile Processes. Raymond Hu. Concurrent Combinators ... Proof: rule induction over pref. map. rules. P [[P]]cc. Proof: structural induction ... – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 38
Provided by: docI1
Category:

less

Transcript and Presenter's Notes

Title: Concurrent Combinators for Mobile Processes


1
Concurrent Combinators for Mobile Processes
  • Raymond Hu
  • Imperial College, 2006

2
Outline
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

3
Combinators
Introduction
  • Atoms of computation
  • The ?-calculus and CL (SKI) syntax and op. sem.
  • ?x abstraction (elimination)
  • CL-term and ß-redex behaviour (?x.M)N ?w
    N/xM
  • HS86

4
Outline (2)
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

5
The p-calculus
The p-calculus
  • Concurrent computation
  • Process calculus syntax, op. sem., equiv.
  • Synchronisation, name passing
  • Communication interaction observation
  • Mobility (dynamic communication topology)
  • The asynchronous p-calculus
  • Mil99, San01, HT92, Bou92, Pal97

6
The p-calculus (2)
The p-calculus
  • Semantics structural congruence () and
    reduction (?), or transition relations (?)
  • Semantics-based equivalences ( , )
  • San01

l


7
Outline (3)
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

8
Concurrent Combinators
  • Atoms have ports connected to names
  • Port polarities determine computation
  • Fixed dyadic interaction (reduction)

9
The cc
The cc
  • 7 atoms
  • Constant units of name passing behaviour
  • Pcc c(u) PQ (?z)P !P 0
  • Constructs have same meaning as in the p-calculus
  • defined by same rules as p-calculus
  • HY94, Yos98

10
Duplicator
The cc
  • d(abc) m(ae) ? m(be) m(ce)
  • cz(bz cz) ae ? be ce

-
-
-
-
11
Forwarder
The cc
  • fw(ab) m(ae) ? m(be)
  • az.bz ae ? be

-
-
12
Killer
The cc
  • k(a) m(ae) ? 0
  • az.0 ae ? 0

13
Left-binder
The cc
  • bl(ab) m(ae) ? fw(eb)
  • az.zw.bw ae ? ew.bw

-
-
14
Right-binder
The cc
  • br(ab) m(ae) ? fw(be)
  • az.bw.zw ae ? bw.ew

-
-
15
Synchroniser
The cc
  • s(abc) m(ae) ? fw(bc)
  • az.bw.cw. ae ? bw.cw

-
-
16
cc-terms
The cc
  • e.g. Switcher sw(ab) (vc)(br(ac) m(cb))

17
Outline (4)
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

18
From p-calculus to the cc
Encoding the p-calculus in the cc
  • Homomorphic mapping with emulation of input
    prefix
  • synchronisation
  • binding
  • xz.P abstraction
  • HY94, Yos98

19
From p-calculus to the cc (2)
Encoding the p-calculus in the cc
20
Analysis of Input Prefix
Encoding the p-calculus in the cc
21
Analysis of Input Prefix (2)
Encoding the p-calculus in the cc
22
Analysis of Input Prefix (3)
Encoding the p-calculus in the cc
  • (i) xz.(PQ) (vc1,c2)(d(xc1c2) c1z.P
    c2z.Q)

23
From p-calculus to the cc (3)
-
-
  • xz.(bzcz) (vc1,c2)(d(xc1c2) fw(c1b)
    fw(c2b))

24
Analysis of Input Prefix (4)
Encoding the p-calculus in the cc
  • (vi) xz.c(v- u) (vc)(s(xvc) c(c- u))

25
From p-calculus to the cc (4)
Encoding the p-calculus in the cc
26
Outline (5)
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

27
Theorems on the cc
Properties of the cc
  • xz.P xz.P
  • xz.P m(xy) ? Py/z
  • Proof rule induction over pref. map. rules
  • P Pcc
  • Proof structural induction
  • HY94, Yos98

28
Replication
Properties of the cc
  • xz.!P (vc)(fw(xc) !cz.(P m(cz)))
  • Want to show xz.!P xz.!P

29
Replication (2)
Properties of the cc
  • Let A !P where P P0y/z,
  • B (vc)(m(cy) !cz.(P0 m(cz))),
  • S (QA, QB) U , L QA, R QB

1a)
30
Replication (3)
Properties of the cc
1b)
31
Replication (4)
Properties of the cc
  • Let A !P where P P0y/z,
  • B (vc)(m(cy) !cz.(P0 m(cz))),
  • S (QA, QB) U , L QA, R QB

2)
32
Outline (6)
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

33
Conclusion
Conclusion
  • p-calculus
  • Behaviour reduction, transition
  • Equivalences
  • The cc
  • Concurrent combinator system
  • Encoding of input prefix
  • Proofs

34
Outline (6)
  1. Introduction
  2. The p-calculus
  3. The cc
  4. Encoding the p-calculus in the cc
  5. Properties of the cc
  6. Conclusion
  7. Related Work

35
Minimality and Separation Yos98
Related Work
  • Generation
  • Basis
  • Essential elements
  • Minimality
  • 5/7 atoms essential for the asynch.-p
  • Tool for comparing expressiveness
  • Separation

36
More Related Work
Related Work
  • Replication in Concurrent Combinators HY94
  • additional atoms, emulation of replication
  • Solos in Concert LV99
  • two encodings of continuations in the fusion
    calculus

37
Solos in Concert LV99
Related Work
Write a Comment
User Comments (0)
About PowerShow.com