Title: Slope Stability Analysis
1Slope Stability Analysis for Landfills and
Embankments Geotechnical Design CGN 4801 By
Kamal Tawfiq, Ph.D., P.E.
2FOR ANALYSIS AND DESIGN SLOPE FAILURE ARE DIVIDED
INTO
I. Planar Failures I- Infinite Slopes II-
Finite Slopes II. Circular Failures III.
Wedge Failures IV. Complex Failures
(Determinate Problems)
Small Depth, Long Failure Surface
Simple Wedge
1- Above the Toe
(Determinate Indeterminate Problems)
2- Through the Toe
3- Deep Seated
Multiple Planar Failure Surface
Combination of Planar Circular
3FACTORS AFFECTING SLOPE STABILITY 1- Soil
Type 2- Geometry of the cross section (Height,
slope angle, etc.) 3- Moisture Content 4- Pore
water pressure 5- Additional loads 6- Shear
Strength reduction 7- Vibrations and Earthquake
By Kamal Tawfiq, Ph.D., P.E.
4METHODS OF ANALYSIS A state of equilibrium is
said to exist when the shear stress along the
failure surface is expressed as
Stress
Shear Strength
S t / Fs
Shear Stress
Strain
Mathematical Representation of Stress vs.
Strain Relationship
Safety Factor
t c sn tan?
t
t c sn tan?
?
c
s
5FACTOR OF SAFETY
1- For Shear Strength tdeveloped t / FS
tdeveloped (c s tan?) / FS 2- For Shear
Parameters cd c / FS tan?d tan? / FS 3-
For Height of the Slope Hdesign Hc / FS
By Kamal Tawfiq, Ph.D., P.E.
6H
INFINITE SLOPE I. PLANAR FAILURE or Transitional
Failure
b 1 cosß
1
A- Dry Soil (? soil)
Driving Force, FD W sin ß
b 1 cosß
Normal Component, FV W cos ß
ß
W ? H cosß
ß
Failure Surface
H
N Fv W cos ß
t N tan?
Weight W
By Kamal Tawfiq, Ph.D., P.E.
7A- Dry Soil (? soil)
W ? H cosß
b 1 cosß
Driving Force FD ? H cos ß sinß Resisting
Force FR ? H cos ß cosß tan? FS FR/FD
G.S.
b 1 cosß
? H cos ß cosß tan?
FS
1
Driving Force, FD W sin ß
? H cos ß sinß
Normal Component, FV W cos ß
tan?
ß
FS
tanß
N Fv W cos ß
ß
Failure Surface
t N tan?
H
Weight W
By Kamal Tawfiq, Ph.D., P.E.
8B- Submarged Soil (? soil)
_
W ? H cosß
_
Driving Force FD ? H cos ß sinß Resisting
Force FR ? H cos ß cosß tan? FS FR/FD
_
W.T
_
G.S.
? H cos ß cosß tan?
FS
_
b 1 cosß
? H cos ß sinß
1
Normal Component, FV W cos ß
tan?
Driving Force, FD W sin ß
FS
ß
tanß
N Fv W cos ß
ß
t N tan?
Failure Surface
H
Weight W
By Kamal Tawfiq, Ph.D., P.E.
9C- Seepage Parallel to Slope (? soil)
?w Z
tan?
)
(1-
FS
?soilH cos2ß
tanß
G.S.
Seepage
b 1 cosß
1
Driving Force, FD W sin ß
Normal Component, FV W cos ß
ß
N Fv W cos ß
ß
Failure Surface
t N tan?
H
Weight W
By Kamal Tawfiq, Ph.D., P.E.
10D- Infinite Slope in c - ? soil (with seepage)
c
u
tan?
)
(1-
FS
?soil H cosß sinß
?soil H cos2ß
tanß
G.S.
If no seepage u 0 If Submarged Slope u 0
? ?
b 1 cosß
Driving Force, FD W sin ß
1
Normal Component, FV W cos ß
ß
N Fv W cos ß
ß
Failure Surface
t N tan?
H
Weight W
By Kamal Tawfiq, Ph.D., P.E.
11Critical Height Hc at FS 1
c
u
tan?
)
(1-
1
FS
?soil H cosß sinß
?soil H cos2ß
tanß
H
ß
c
- u tan?
N Fv W cos ß
Hc
ß
?soil cos2ß (tanß - tan?)
Weight W
Stability Number Ns
u
c
ru
Ns
pore water pressure ratio
?H
?Hc
General Equation
c
Hc
?soil sinß cosß - tan? (cos2ß - ru)
By Kamal Tawfiq, Ph.D., P.E.
12General Equation
c
Hc
?soil sinß cosß - tan? (cos2ß - ru)
c
sinß cosß - tan? (cos2ß - ru)
Ns
?Hc
cd
sinß cosß - tan? (cos2ß - ru)
Ns
?H
c
Ns c /?Hc
cd
FS
? 15o
tan?
? 25o
tan?d
? 35o
FS
? 45o
ß
By Kamal Tawfiq, Ph.D., P.E.
13Stability Number
- A variety of charted solutions exist for the
simple geometry considered above. - For the undrained (total stress) analysis of
slopes charts produced by Taylor are often used. - The charts are based on the analysis of circular
failure surfaces, and assume that soil strength
is given by a Mohr-Coulomb analysis - Tension cracks are not considered
14Taylors Chart
15Taylors Chart - example
8 m
o
30
Use chart with i 30 degrees, f 5 degrees
16Taylors Chart
17Taylors Chart - example
8 m
o
30
Use chart with i 30 degrees, f 5
degrees Hence
18Taylors Chart - example
8 m
o
30
Use chart with i 30 degrees, f 5
degrees Hence
19Taylors Chart - example
- Zones are marked on the chart indicating whether
the failure mode will be shallow or deep-seated. - If a deep-seated failure is indicated the soil
layer must be sufficiently deep to enable this
mechanism to occur. - There is a second chart due to Taylor which can
be used when the depth of soil below the base of
the slope is limited - This chart is only valid for f 0
20(No Transcript)
21Taylors Chart - example with finite depth
8 m
o
30
2 m
Rock
Calculate the Depth Factor D
22Taylors Chart - example with finite depth
8 m
DH
o
30
2 m
Rock
Calculate the Depth Factor D DH 10 m
23Taylors Chart - example with finite depth
8 m
DH
o
30
2 m
Rock
Calculate the Depth Factor D DH 10 m, H 8m D
1.25
24(No Transcript)
25Taylors Chart - example with finite depth
8 m
DH
o
30
2 m
D 1.25
Rock
and F 1.075
26(No Transcript)
27Quiz 4 Fall 2009
For the infinite slope shown below, what is the
pore water pressure at point A ?
b
Soil Surface
b/cos a
Water Table
W
Assumed failure surface
d
dw
T
N
dwcos a
A
U
a
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33STATICALLY INDETERMINATE PROBLEMS
METHOD OF SLICES
Center
Center
Xi
1
2
?x
3
4
5
6
7
R
8
11
10
9
Si
ai
ai
Wi cos a
Ei
S ?S
Ti c.L Neffi tan ?
Ti c.L Neffi tan ?
E ?E
Wi
Wi
Wi sin a
ai
L
Ni Neffi ui L
?
Ni Neffi ui L
ai
ai
Resultant
By Kamal Tawfiq, Ph.D., P.E
34Center
Xi
Unknowns Associated with Force Equilibrium n
Resultant normal forces Ni on the base of each
slice or wedge 1 Safety factor, which permits
the shear forces Ti on the base of each slice
to be expressed in terms of Ni n-1 Resultant
normal forces Ei on each interface between slices
or wedges n-1 Angles ai which express the
relationships between the shear force Si and
the normal force Ei on each interface
?xi
R
S ?S
Si
Ei
Ti c.Li Neffi tan ?
?i
Wi
Ei ?E
Li
bi
Ni Neffi ui Li
?
ai
ai
ai
ai
Resultant
ai
By Kamal Tawfiq, Ph.D., P.E
35FELLENIUS METHOD (ORDINARY METHOD, SWEDISH METHOD)
Wi cos a
Center
Xi
Ti c.L Neffi tan ?
Wi
Wi sin a
ai
?xi
R
Ni Neffi ui L
Si
Ei
S ?S
Ti c.Li Neffi tan ?
Ei ?E
Wi
Li
MR ?CLi (wicos?i -uiLi)tan?
F
bi
MD ?wi sin?i
Ni Neffi ui Li
?
ai
ai
ai
ai
Resultant
ai
By Kamal Tawfiq, Ph.D., P.E