Presentacin de PowerPoint - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Presentacin de PowerPoint

Description:

Discrete: if it takes at most countably many. values (integers) ... depending on wether is either discrete or continuous. Distribution of a random variable ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 37
Provided by: Cris347
Category:

less

Transcript and Presenter's Notes

Title: Presentacin de PowerPoint


1
2. Random variables
  • Introduction
  • Distribution of a random variable
  • Distribution function properties
  • Discrete random variables
  • Point mass
  • Discrete uniform
  • Bernoulli
  • Binomial
  • Geometric
  • Poisson   

1
2
2. Random variables
  • Continuous random variables
  • Uniform
  • Exponential
  • Normal
  • Transformations of random variables
  • Bivariate random variables
  • Independent random variables
  • Conditional distributions
  • Expectation of a random variable
  • kth moment

2
3
2. Random variables
  • Variance
  • Covariance
  • Correlation
  • Expectation of transformed variables
  • Sample mean and sample variance
  • Conditional expectation

3
4
Introduction
  • Random variables assign a real number to each
  • outcome
  • Random variables can be
  • Discrete if it takes at most countably many
  • values (integers).
  • Continuous if it can take any real number.

4
RANDOM VARIABLES
5
Distribution of a random variable
Distribution function
5
RANDOM VARIABLES
6
Distribution function properties
6
RANDOM VARIABLES
7
Distribution of a random variable
  • For a random variable, we define
  • Probability function
  • Density function,
  • depending on wether is either discrete or
    continuous

7
RANDOM VARIABLES
8
Distribution of a random variable
Probability function
verifies
8
RANDOM VARIABLES
9
Distribution of a random variable
Probability density function
verifies
We have
9
RANDOM VARIABLES
10
Distribution of a random variable
completely determines the distribution of
a random variable.
10
RANDOM VARIABLES
11
Discrete random variables
Point mass
11
RANDOM VARIABLES
12
Discrete random variables
Discrete uniform
12
RANDOM VARIABLES
13
Discrete random variables
Bernoulli
13
RANDOM VARIABLES
14
Discrete random variables
Binomial Successes in n independent Bernoulli
trials with success probability p
14
RANDOM VARIABLES
15
Discrete random variables
Geometric Time of first success in a sequence of
independent Bernoulli trials with success
probability p
15
RANDOM VARIABLES
16
Discrete random variables
Poisson X expresses the number of rare events
16
RANDOM VARIABLES
17
Continuous random variables
Uniform
17
RANDOM VARIABLES
18
Continuous random variables
Exponential
18
RANDOM VARIABLES
19
Continuous random variables
Normal
19
RANDOM VARIABLES
20
Continuous random variables
  • Properties of normal distribution
  • standard normal
  • (ii)
  • (iii) independent
    i1,2,...,n

20
RANDOM VARIABLES
21
Transformations of random variables
X random variable with Y r(x)
distribution of Y ? r() is one-to-one r -1().
21
RANDOM VARIABLES
22
Bivariate random variables
  • (X,Y) random variables
  • If (X,Y) is a discrete random variable
  • If (X,Y) is continuous random variable

22
RANDOM VARIABLES
23
Bivariate random variables
The marginal probability functions for X and Y
are
For continuous random variables, the
marginal densities for X and Y are
23
RANDOM VARIABLES
24
Independent random variables
Two random variables X and Y are independent
if and only if for all values x and y.
24
RANDOM VARIABLES
25
Conditional distributions
Discrete variables
Continuous variables
If X and Y are independent
25
RANDOM VARIABLES
26
Expectation of a random variable
  • Properties
  • (i)
  • If are independent then

26
RANDOM VARIABLES
27
Moment of order k
27
RANDOM VARIABLES
28
Variance
Given X with standard
deviation
28
RANDOM VARIABLES
29
Variance
  • Properties
  • (i)
  • If are independent then
  • (iii)
  • (iv)

29
RANDOM VARIABLES
30
Covariance
X and Y random variables
Properties (i) If X, Y are independent
then (ii) (iii) V(X Y) V(X)
V(Y) 2cov(X,Y) V(X - Y) V(X)
V(Y) - 2cov(X,Y)
30
RANDOM VARIABLES
31
Correlation
X and Y random variables
31
RANDOM VARIABLES
32
Correlation
  • Properties
  • (i)
  • If X and Y are independent then

32
RANDOM VARIABLES
33
Expectation of transformed variables

33
RANDOM VARIABLES
34
Sample mean and sample variance
Sample mean
Sample variance
34
RANDOM VARIABLES
35
Sample mean and sample variance
Properties X random variable
i. i. d. sample, Then (i)
(ii) (iii)
35
RANDOM VARIABLES
36
Conditional expectation
X and Y are random variables Then
Properties
36
RANDOM VARIABLES
Write a Comment
User Comments (0)
About PowerShow.com