Title: Presentacin de PowerPoint
12. Random variables
- Introduction
- Distribution of a random variable
- Distribution function properties
- Discrete random variables
- Point mass
- Discrete uniform
- Bernoulli
- Binomial
- Geometric
- Poisson
1
22. Random variables
- Continuous random variables
- Uniform
- Exponential
- Normal
- Transformations of random variables
- Bivariate random variables
- Independent random variables
- Conditional distributions
- Expectation of a random variable
- kth moment
2
32. Random variables
- Variance
- Covariance
- Correlation
- Expectation of transformed variables
- Sample mean and sample variance
- Conditional expectation
3
4Introduction
- Random variables assign a real number to each
- outcome
- Random variables can be
- Discrete if it takes at most countably many
- values (integers).
- Continuous if it can take any real number.
4
RANDOM VARIABLES
5Distribution of a random variable
Distribution function
5
RANDOM VARIABLES
6Distribution function properties
6
RANDOM VARIABLES
7Distribution of a random variable
- For a random variable, we define
- Probability function
- Density function,
- depending on wether is either discrete or
continuous
7
RANDOM VARIABLES
8Distribution of a random variable
Probability function
verifies
8
RANDOM VARIABLES
9Distribution of a random variable
Probability density function
verifies
We have
9
RANDOM VARIABLES
10Distribution of a random variable
completely determines the distribution of
a random variable.
10
RANDOM VARIABLES
11Discrete random variables
Point mass
11
RANDOM VARIABLES
12Discrete random variables
Discrete uniform
12
RANDOM VARIABLES
13Discrete random variables
Bernoulli
13
RANDOM VARIABLES
14Discrete random variables
Binomial Successes in n independent Bernoulli
trials with success probability p
14
RANDOM VARIABLES
15Discrete random variables
Geometric Time of first success in a sequence of
independent Bernoulli trials with success
probability p
15
RANDOM VARIABLES
16Discrete random variables
Poisson X expresses the number of rare events
16
RANDOM VARIABLES
17Continuous random variables
Uniform
17
RANDOM VARIABLES
18Continuous random variables
Exponential
18
RANDOM VARIABLES
19Continuous random variables
Normal
19
RANDOM VARIABLES
20Continuous random variables
- Properties of normal distribution
- standard normal
- (ii)
- (iii) independent
i1,2,...,n
20
RANDOM VARIABLES
21Transformations of random variables
X random variable with Y r(x)
distribution of Y ? r() is one-to-one r -1().
21
RANDOM VARIABLES
22Bivariate random variables
- (X,Y) random variables
- If (X,Y) is a discrete random variable
- If (X,Y) is continuous random variable
22
RANDOM VARIABLES
23Bivariate random variables
The marginal probability functions for X and Y
are
For continuous random variables, the
marginal densities for X and Y are
23
RANDOM VARIABLES
24Independent random variables
Two random variables X and Y are independent
if and only if for all values x and y.
24
RANDOM VARIABLES
25Conditional distributions
Discrete variables
Continuous variables
If X and Y are independent
25
RANDOM VARIABLES
26Expectation of a random variable
- Properties
- (i)
- If are independent then
26
RANDOM VARIABLES
27Moment of order k
27
RANDOM VARIABLES
28Variance
Given X with standard
deviation
28
RANDOM VARIABLES
29Variance
- Properties
- (i)
- If are independent then
- (iii)
- (iv)
29
RANDOM VARIABLES
30Covariance
X and Y random variables
Properties (i) If X, Y are independent
then (ii) (iii) V(X Y) V(X)
V(Y) 2cov(X,Y) V(X - Y) V(X)
V(Y) - 2cov(X,Y)
30
RANDOM VARIABLES
31Correlation
X and Y random variables
31
RANDOM VARIABLES
32Correlation
- Properties
- (i)
- If X and Y are independent then
-
32
RANDOM VARIABLES
33Expectation of transformed variables
33
RANDOM VARIABLES
34Sample mean and sample variance
Sample mean
Sample variance
34
RANDOM VARIABLES
35Sample mean and sample variance
Properties X random variable
i. i. d. sample, Then (i)
(ii) (iii)
35
RANDOM VARIABLES
36Conditional expectation
X and Y are random variables Then
Properties
36
RANDOM VARIABLES